【題目】如圖,四邊形ABCD 是平行四邊形,AB=c,AC=b,BC=a,拋物線 y=ax2+bx﹣c 與 x 軸的一個交點為(m,0).
(1)若四邊形ABCD是正方形,求拋物線y=ax2+bx﹣c的對稱軸;
(2)若 m=c,ac﹣4b<0,且 a,b,c為整數,求四邊形 ABCD的面積.
【答案】(1)x=;(2)
.
【解析】
(1)由四邊形ABCD是正方形,可求出a與b的關系,進而可根據對稱軸方程求出對稱軸;
(2)把(c,0)代入y=ax2+bx﹣c,整理得ac=16﹣4b,結合ac﹣4b<0,可求b>2,由求根公式得x1=﹣
,x2=
,解
>0,得b<4,從而2<b<4,而b為整數,所以b=3,然后可求出a和c的值,從而可證明四邊形ABCD是菱形,根據菱形的面積公式即可求出四邊形ABCD的面積.
(1)∵四邊形ABCD是正方形,
∴AB=BC,AC=AB,
即b=a=
c,
∴拋物線y=ax2+bx﹣c的對稱軸為直線x=﹣=﹣
=﹣
;
(2)∵m=c,
∴拋物線y=ax2+bx﹣c與x軸的一個交點為(c,0).
把(c,0)代入y=ax2+bx﹣c得a
c2+
bc﹣c=0,
∴ac+4b﹣16=0,
∴ac=16﹣4b,
∵ac﹣4b<0,
∴16﹣4b﹣4b<0,解得b>2,
對于方程ax2+bx﹣c=0,
∵△=b2+4ac=b2+4(16﹣4b)=(b﹣8)2,
∴x=,解得x1=﹣
,x2=
,
∴拋物線與x軸的交點為(﹣,0),(
,0),
而m=c>0,
∴>0,解得b<4
∴2<b<4,
而b為整數,
∴b=3,
∴ac=16﹣4×3=4,
而a、c為整數,
∴a=1,c=4(舍去)或a=2,b=2,
即平行四邊形ABCD中,AB=2,BC=2,AC=3,
∴四邊形ABCD為菱形,
連接BD交AC于O,則OA=OC=,BO=DO,
在Rt△BOC中,BO==
,
∴BD=2OB=,
∴四邊形ABCD的面積=×3×
=
.
科目:初中數學 來源: 題型:
【題目】如圖,矩形EFGH內接于△ABC,且邊FG落在BC上,若AD⊥BC,BC=3,AD=2,EF=EH.
(1)求證:△AEH∽△ABC;
(2)求矩形EFGH的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某班甲、乙、丙三位同學進行了一次用正方形紙片折疊探究相關數學問題的課題學習活動.
活動情境:
如圖2,將邊長為8cm的正方形紙片ABCD沿EG折疊(折痕EG分別與AB、DC交于點E、G),使點B落在AD邊上的點 F處,FN與DC交于點M處,連接BF與EG交于點P.
所得結論:
當點F與AD的中點重合時:(如圖1)甲、乙、丙三位同學各得到如下一個正確結論(或結果):
甲:△AEF的邊AE=____cm,EF=____cm;
乙:△FDM的周長為16 cm;
丙:EG=BF.
你的任務:
【1】填充甲同學所得結果中的數據;
【2】寫出在乙同學所得結果的求解過程;
【3】當點F在AD邊上除點A、D外的任何一處(如圖2)時:
① 試問乙同學的結果是否發生變化?請證明你的結論;
② 丙同學的結論還成立嗎?若不成立,請說明理由,若你認為成立,先證明EG=BF,再求出S(S為四邊形AEGD的面積)與x(AF=x)的函數關系式,并問當x為何值時,S最大?最大值是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線的頂點為C,對稱軸為直線
,且經過點A(3,-1),與y軸交于點B.
(1)求拋物線的解析式;
(2)判斷△ABC的形狀,并說明理由;
(3)經過點A的直線交拋物線于點P,交x軸于點Q,若,試求出點P的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+4 經過點A(﹣3,0),點 B 在拋物線上,CB∥x軸,且AB 平分∠CAO.則此拋物線的解析式是___________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=4,BC=2.P是AB邊上一動點,PD⊥AC于點D,點E在P的右側,且PE=1,連結CE.P從點A出發,沿AB方向運動,當E到達點B時,P停止運動.在整個運動過程中,圖中陰影部分面積S1+S2的大小變化情況是( )
A. 一直減小B. 一直不變C. 先減小后增大D. 先增大后減小
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】我們發現:若AD是△ABC的中線,則有AB2+AC2=2(AD2+BD2),請利用結論解決問題:如圖,在矩形ABCD中,已知AB=20,AD=12,E是DC中點,點P在以AB為直徑的半圓上運動,則CP2+EP2的最小值是_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一個正方形AOBC各頂點的坐標分別為A(0,3),O(0,0),B(3,0),C(3,3).若以原點為位似中心,將這個正方形的邊長縮小為原來的,則新正方形的中心的坐標為_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB=AC,CD⊥AB于點D,點O是∠BAC的平分線上一點,⊙O與AB相切于點M,與CD相切于點N
(1)求證:∠AOC=135°;
(2)若NC=3,BC=2,求DM的長.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com