【題目】在△ABC的邊AC上取一點,使得AB=AD,若點D恰好在BC的垂直平分線上,寫出∠ABC與∠C的數量關系,并證明.
科目:初中數學 來源: 題型:
【題目】如圖,△ABC中,IB,IC分別平分∠ABC,∠ACB,過I點作DE∥BC,分別交AB于D,交AC于E,給出下列結論:①△DBI是等腰三角形;②△ACI是等腰三角形;③AI平分∠BAC;④△ADE周長等于AB+AC,其中正確的是: ___________(只需填寫序號)。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在等邊三角形ABC中,點D,E分別在邊BC,AC上,DE∥AB,過點E作EF⊥DE,交BC的延長線于點F.
(1)求∠F的度數;
(2)若CE=4,求DF的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在不透明的袋子中有黑棋子10枚和白棋子若干(它們除顏色外都相同),現隨機從中摸出10枚記下顏色后放回,這樣連續做了10次,記錄了如下的數據:
次數 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
黑棋數 | 1 | 3 | 0 | 2 | 3 | 4 | 2 | 1 | 1 | 3 |
根據以上數據,估算袋中的白棋子數量為( )
A. 60枚 B. 50枚 C. 40枚 D. 30枚
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,⊙O中,直徑CD⊥弦AB于E,AM⊥BC于M,交CD于N,連接AD.
(1)求證:AD=AN;
(2)若AB=8,ON=1,求⊙O的半徑.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知△ABC中,AB=AC,AD為中線,點P是AD上一點,點Q是AC上一點,且∠BPQ+∠BAQ=180°.
(1)若∠ABP=α,求∠PQC的度數(用含α的式子表示);
(2)求證:BP=PQ.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AD平分∠BAC,DE⊥AB于點E,DF⊥AC于點F,且BD=CD.
(1)圖中與△BDE全等的三角形是 ,請加以證明;
(2)若AE=6 cm,AC=4 cm,求BE的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】先閱讀下列材料,然后回答問題:
在關于x的一元二次方程ax2+bx+c=0(a≠0)中,若各項的系數之和為零,即a+b+c=0,則有一根為1,另一根為.
證明:設方程的兩根為x1,x2,由a+b+c=0,知b=-(a+c),
∵x==
,
∴x1=1,x2=.
(1)若一元二次方程ax2+bx+c=0(a≠0)的各項系數滿足a-b+c=0,請直接寫出此方程的兩根;
(2)已知方程(ac-bc)x2+(bc-ab)x+(ab-ac)=0有兩個相等的實數根,運用上述結論證明:.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】課題學習:設計概率模擬實驗.
在學習概率時,老師說:“擲一枚質地均勻的硬幣,大量重復實驗后,正面朝上的概率約是.”小海、小東、小英分別設計了下列三個模擬實驗:
小海找來一個啤酒瓶蓋(如圖1)進行大量重復拋擲,然后計算瓶蓋口朝上的次數與總次數的比值;
小東用硬紙片做了一個圓形轉盤,轉盤上分成8個大小一樣的扇形區域,并依次標上1至8個數字(如圖2),轉動轉盤10次,然后計算指針落在奇數區域的次數與總次數的比值;
小英在一個不透明的盒子里放了四枚除顏色外都相同的圍棋子(如圖3),其中有三枚是白子,一枚是黑子,從中隨機同時摸出兩枚棋子,并大量重復上述實驗,然后計算摸出的兩枚棋子顏色不同的次數與總次數的比值.
根據以上材料回答問題:
小海、小東、小英三人中,哪一位同學的實驗設計比較合理,并簡要說出其他兩位同學實驗的不足之處.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com