【題目】如圖,已知以E(3,0)為圓心,以5為半徑的⊙E與x軸交于A,B兩點,與y軸交于C點,拋物線經過A,B,C三點,頂點為F.
(1)求A,B,C三點的坐標;
(2)求拋物線的解析式及頂點F的坐標;
(3)已知M為拋物線上一動點(不與C點重合),試探究:
①使得以A,B,M為頂點的三角形面積與△ABC的面積相等,求所有符合條件的點M的坐標;
②若探究①中的M點位于第四象限,連接M點與拋物線頂點F,試判斷直線MF與⊙E的位置關系,并說明理由.
【答案】(1)A(-2,0),B(8,0),C(0,-4);(2).F(3,
);(3)①點M的坐標為(
,4)或(
,4);②直線MF與⊙E相切.理由見解析.
【解析】
(1)由題意可直接得到點A、B的坐標,連接CE,在Rt△OCE中,利用勾股定理求出OC的長,則得到點C的坐標.
(2)已知點A、B、C的坐標,利用交點式與待定系數法求出拋物線的解析式,由解析式得到頂點F的坐標.
(3)①△ABC中,底邊AB上的高OC=4,若△ABC與△ABM面積相等,則拋物線上的點M須滿足條件:|yM|=4.因此解方程yM=4和yM=-4,可求得點M的坐標.
②如解答圖,作輔助線,可求得EM=5,因此點M在⊙E上;再利用勾股定理求出MF的長度,則利用勾股定理的逆定理可判定△EMF為直角三角形,∠EMF=90°,所以直線MF與⊙E相切.
解:(1)∵以E(3,0)為圓心,以5為半徑的⊙E與x軸交于A,B兩點,
∴A(-2,0),B(8,0).
如圖所,連接CE,
在Rt△OCE中,,CE=5,
由勾股定理得:,
∴C(0,-4).
(2)∵點A(-2,0),B(8,0)在拋物線上,
∴設拋物線的解析式為.
∵點C(0,-4)在拋物線上,
∴,解得
.
∴拋物線的解析式為:,即
.
∵.
∴頂點F的坐標為(3,).
(3)①∵△ABC中,底邊AB上的高OC=4,
∴若△ABC與△ABM面積相等,則拋物線上的點M須滿足條件:|yM|=4.
(I)若yM=4,則,
整理得:,解得
或
.
∴點M的坐標為(,4)或(
,4).
(II)若yM=-4,則,
整理得:,解得x=6或x=0(與點C重合,故舍去).
∴點M的坐標為(6,-4).
綜上所述,滿足條件的點M的坐標為:(,4)或(
,4)或(6,-4).
②直線MF與⊙E相切.理由如下:
由題意可知,M(6,-4).
如圖,連接EM,MF,過點M作MG⊥對稱軸EF于點G,則MG=3,EG=4.
在Rt△MEG中,由勾股定理得:,
∴點M在⊙E上.
由(2)知,F(3,),∴EF=
.
∴.
在Rt△MGF中,由勾股定理得:,
在△EFM中,∵,
∴△EFM為直角三角形,∠EMF=90°.
∵點M在⊙E上,且∠EMF=90°,
∴直線MF與⊙E相切.
科目:初中數學 來源: 題型:
【題目】某種工業原料,甲倉庫有12噸,乙倉庫有6噸,現需從甲、乙兩倉庫將這種工業原料分別調往A工廠10噸,B工廠8噸,已知從甲倉庫調運1噸原料到A,B兩工廠的運費分別是40元和80元,從乙倉庫調運1噸原料到A,B兩工廠的運費分別是30元和50元.
(1)若總運費為900元,則從甲倉庫調運到A工廠的原料為多少噸?
(2)要使總運費最低,應如何安排調運方案?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】若矩形的一個短邊與長邊的比值為,(黃金分割數),我們把這樣的矩形叫做黃金矩形
(1)操作:請你在如圖所示的黃金矩形ABCD(AB>AD)中,以短邊AD為一邊作正方形AEFD.
(2)探究:在(1)中的四邊形EBCF是不是黃金矩形?若是,請予以證明;若不是,請說明理由.
(3)歸納:通過上述操作及探究,請概括出具體有一般性的結論(不需證明)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】二次函數 y=ax2+bx+c(a≠0)的圖象如圖所示,對稱軸是直線 x=1,下列結論:①ab<0;②b2>4ac;③a+b+2c<0;④3a+c<0. 其中正確的是( )
A.①④B.②④C.①②③D.①②③④
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,方格紙中每個小正方形的邊長都是1個單位長度.小正方形的頂點稱為格點的三個頂點
,
,
.
(1)將以點
為旋轉中心旋轉
,得到
,請畫出的圖形
;
(2)平移,使點
的對應點
坐標為
,請畫出平移后對應的
;
(3)若將繞某一點旋轉可得到
,請直接寫出旋轉中心的坐標;
(4)請畫出一個以為對角線,面積是20的菱形
(要求
,
是格點).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下列說法正確的是( 。
A. 一個游戲的中獎概率是,則做10次這樣的游戲一定會中獎
B. 為了解全國中學生的心理健康情況,應該采用普查的方式
C. 一組數據6,8,7,8,8,9,10的眾數和中位數都是8
D. 若甲組數據的方差,乙組數據的方差
,則乙組數據比甲組數據穩定
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線經過點、
、
.
(1)求拋物線的解析式;
(2)若與拋物線的對稱軸交于點
,以
為圓心,
長為半徑作圓,
與
軸的位置關系如何?請說明理由.
(3)過點作
的切線
,交
軸于點
,請求出直線
的解析式及
點坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】從﹣2,﹣,0,4中任取一個數記為m,再從余下的三個數中,任取一個數記為n,若k=mn.
(1)請用列表或畫樹狀圖的方法表示取出數字的所有結果;
(2)求正比例函數y=kx的圖象經過第一、三象限的概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com