【題目】拋物線y=x2+bx+c與x軸交于A(1,0),B(m,0),與y軸交于C.
(1)若m=﹣3,求拋物線的解析式,并寫出拋物線的對稱軸;
(2)如圖1,在(1)的條件下,設拋物線的對稱軸交x軸于D,在對稱軸左側的拋物線上有一點E,使S△ACE= S△ACD,求點E的坐標;
(3)如圖2,設F(﹣1,﹣4),FG⊥y于G,在線段OG上是否存在點P,使∠OBP=∠FPG?若存在,求m的取值范圍;若不存在,請說明理由.
【答案】(1)拋物線的解析式為:y=x2+2x﹣3=(x+1)2﹣4;對稱軸是:直線x=﹣1;(2)點E的坐標為E(﹣4,5)(3)當﹣4≤m<0或m=3時,在線段OG上存在點P,使∠OBP=∠FPG.
【解析】
試題分析:(1)利用待定系數法求二次函數的解析式,并配方求對稱軸;(2)如圖1,設E(m,m2+2m﹣3),先根據已知條件求S△ACE=10,根據不規則三角形面積等于鉛直高度與水平寬度的積列式可求得m的值,并根據在對稱軸左側的拋物線上有一點E,則點E的橫坐標小于﹣1,對m的值進行取舍,得到E的坐標;
(3)分兩種情況:①當B在原點的左側時,構建輔助圓,根據直徑所對的圓周角是直角,只要滿足∠BPF=90°就可以構成∠OBP=∠FPG,如圖2,求出圓E與y軸有一個交點時的m值,則可得取值范圍;②當B在原點的右側時,只有△OBP是等腰直角三角形,△FPG也是等腰直角三角形時滿足條件,直接計算即可.
試題解析:(1)當m=﹣3時,B(﹣3,0),
把A(1,0),B(﹣3,0)代入到拋物線y=x2+bx+c中得:,解得
,
∴拋物線的解析式為:y=x2+2x﹣3=(x+1)2﹣4;對稱軸是:直線x=﹣1;
(2)如圖1,設E(m,m2+2m﹣3),
由題意得:AD=1+1=2,OC=3,
S△ACE=S△ACD=
×
ADOC=
×2×3=10,
設直線AE的解析式為:y=kx+b,
把A(1,0)和E(m,m2+2m﹣3)代入得,
,解得:
,
∴直線AE的解析式為:y=(m+3)x﹣m﹣3,∴F(0,﹣m﹣3),
∵C(0,﹣3),∴FC=﹣m﹣3+3=﹣m,∴S△ACE=FC(1﹣m)=10,
﹣m(1﹣m)=20,m2﹣m﹣20=0,
(m+4)(m﹣5)=0,
m1=﹣4,m2=5(舍),
∴E(﹣4,5);
(3)如圖2,當B在原點的左側時,連接BF,以BF為直徑作圓E,當⊙E與y軸相切時,設切點為P,
∴∠BPF=90°,∴∠FPG+∠OPB=90°,∵∠OPB+∠OBP=90°,∴∠OBP=∠FPG,
連接EP,則EP⊥OG,
∵BE=EF,∴EP是梯形的中位線,∴OP=PG=2,
∵FG=1,tan∠FPG=tan∠OBP=,
∴,∴m=﹣4,
∴當﹣4≤m<0時,在線段OG上存在點P,使∠OBP=∠FPG;
如圖3,當B在原點的右側時,要想滿足∠OBP=∠FPG,
則∠OBP=∠OPB=∠FPG,∴OB=OP,
∴△OBP是等腰直角三角形,△FPG也是等腰直角三角形,
∴FG=PG=1,∴OB=OP=3,∴m=3,
綜上所述,當﹣4≤m<0或m=3時,在線段OG上存在點P,使∠OBP=∠FPG.
科目:初中數學 來源: 題型:
【題目】如圖示,若△ABC內一點P滿足∠PAC=∠PBA=∠PCB,則點P為△ABC的布洛卡點.三角形的布洛卡點(Brocard point)是法國數學家和數學教育家克洛爾(A.L.Crelle 1780﹣1855)于1816年首次發現,但他的發現并未被當時的人們所注意,1875年,布洛卡點被一個數學愛好者法國軍官布洛卡(Brocard 1845﹣1922)重新發現,并用他的名字命名.問題:已知在等腰直角三角形DEF中,∠EDF=90°,若點Q為△DEF的布洛卡點,DQ=1,則EQ+FQ=( )
A.5 B.4 C.3+ D.2+
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線EF,CD相交于點0,OA⊥OB,且OC平分∠AOF,
(1)若∠AOE=40°,求∠BOD的度數;
(2)若∠AOE=α,求∠BOD的度數;(用含α的代數式表示)
(3)從(1)(2)的結果中能看出∠AOE和∠BOD有何關系?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】若現有長為3cm,4cm,7cm,9cm的四根木棒,任取其中三根組成一個三角形,則可以組成不同的三角形的個數是( )
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】第十二屆全國人大代表選舉的基本原則是:城鄉同比選舉,實現人人平等、地區平等、民族平等.據新華網2月28日公布,全國5個少數民族自治區的人大代表如下:
這五個地區代表人數的中位數是___________.
選區 | 廣西 | 西藏 | 新疆 | 寧夏 | 內蒙 |
人數(人) | 90 | 20 | 60 | 21 | 58 |
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某超市銷售一種牛奶,進價為每箱24元,規定售價不低于進價.現在的售價為每箱36元,每月可銷售60箱.市場調查發現:若這種牛奶的售價每降價1元,則每月的銷量將增加10箱,設每箱牛奶降價x元(x為正整數),每月的銷量為y箱.
(1)寫出y與x中間的函數關系式和自變量的取值范圍;
(2)超市如何定價,才能使每月銷售牛奶的利潤最大?最大利潤是多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,AD⊥BC于D,BE平分∠ABC交AC于E,交AD于F,FG∥BC,FH∥AC,下列結論:①AE=AF;②AF=FH;③AG=CE;④AB+FG=BC,其中正確的結論有 . (填序號)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com