【題目】如圖,點是等邊
內一點,
,
,將
繞點
順時針方向旋轉
得到
,連接
,
.
(1)當時,判斷
的形狀,并說明理由;
(2)求的度數;
(3)請你探究:當為多少度時,
是等腰三角形?
【答案】(1)為直角三角形,理由見解析;(2)
;(3)當
為
或
或
時,
為等腰三角形.
【解析】
(1)由旋轉可以得出和
均為等邊三角形,再根據
求出
,進而可得
為直角三角形;
(2)因為進而求得
,根據
,即可求出求
的度數;
(3)由條件可以表示出∠AOC=250°-a,就有∠AOD=190°-a,∠ADO=a-60°,當∠DAO=∠DOA,∠AOD=ADO或∠OAD=∠ODA時分別求出a的值即可.
解:(1)為直角三角形,理由如下:
繞
順時針旋轉
得到
,
和
均為等邊三角形,
,
,
,
,
為直角三角形;
(2)由(1)知:,
,
,
,
;
(3)∵∠AOB=110°,∠BOC=α
∴∠AOC=250°-a.
∵△OCD是等邊三角形,
∴∠DOC=∠ODC=60°,
∴∠ADO=a-60°,∠AOD=190°-a,
當∠DAO=∠DOA時,
2(190°-a)+a-60°=180°,
解得:a=140°
當∠AOD=ADO時,
190°-a=a-60°,
解得:a=125°,
當∠OAD=∠ODA時,
190°-a+2(a-60°)=180°,
解得:a=110°
∴α=110°,α=140°,α=125°.
科目:初中數學 來源: 題型:
【題目】在梯形ABCD中,AD∥BC,下列條件中,不能判斷梯形ABCD是等腰梯形的是( )
A. ∠ABC=∠DCB B. ∠DBC=∠ACB C. ∠DAC=∠DBC D. ∠ACD=∠DAC
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】二次函數y=ax2+bx+c(a≠0)的圖象如圖,下列四個結論:
①4a+c<0;②m(am+b)+b>a(m≠﹣1);③關于x的一元二次方程ax2+(b﹣1)x+c=0沒有實數根;④ak4+bk2<a(k2+1)2+b(k2+1)(k為常數).其中正確結論的個數是( 。
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,在□ABCD中,DE、BF分別是∠ADC和∠ABC的角平分線,交AB、CD于點E、F,連接BD、EF.
(1)求證:BD、EF互相平分;
(2)若∠A=600,AE=2EB,AD=4,求四邊形DEBF的周長和面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在直角坐標系中,點A、B的坐標分別為(1,4)和(3,0),點C是y軸上的一個動點,且A、B、C三點不在同一條直線上,當△ABC的周長最小時,點C的坐標是( )
A. (0,0); B. (0,1); C. (0,2); D. (0,3).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知某市某種出租車收費標準如下:乘車里程不超過3公里的一律收費10元,乘車里程超過3公里的,超過部分按每公里1.8元加收.
(1)如果有人乘該出租車行駛了8公里,那么他應付多少車費?
(2)如果該人行駛了x(x>3)公里,他應付多少車費?
(3)某游客乘出租車從A地到B地,付車費22.6元,試估算從A地到B地大約多少公里?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,二次函數的圖象與
軸交于A(-3,0),B(1,0)兩點,與y軸交于點C.
(1)求這個二次函數的解析式;
(2)點P是直線AC上方的拋物線上一動點,是否存在點P,使△ACP的面積最大?若存在,求出點P的坐標;若不存在,說明理由;
(3)點Q是直線AC上方的拋物線上一動點,過點Q作QE垂直于軸,垂足為E.是否存在點Q,使以點B、Q、E為頂點的三角形與△AOC相似?若存在,直接寫出點Q的坐標;若不存在,說明理由;
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,四邊形ABCD的四個頂點分別在反比例函數與
(x>0,0<m<n)的圖象上,對角線BD//y軸,且BD⊥AC于點P.已知點B的橫坐標為4.
(1)當m=4,n=20時.
①若點P的縱坐標為2,求直線AB的函數表達式.
②若點P是BD的中點,試判斷四邊形ABCD的形狀,并說明理由.
(2)四邊形ABCD能否成為正方形?若能,求此時m,n之間的數量關系;若不能,試說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com