【題目】如圖,拋物線y1=a(x+2)2+m過原點,與拋物線y2= (x﹣3)2+n交于點A(1,3),過點A作x軸的平行線,分別交兩條拋物線于點B,C.下列結論:①兩條拋物線的對稱軸距離為5;②x=0時,y2=5;③當x>3時,y1﹣y2>0;④y軸是線段BC的中垂線.正確結論是(填寫正確結論的序號).
【答案】①③④
【解析】解:∵拋物線y1=a(x+2)2+m與拋物線y2= (x﹣3)2+n的對稱軸分別為x=﹣2,x=3, ∴兩條拋物線的對稱軸距離為5,故①正確;
∵y1=a(x+2)2+m經過點A(1,3)與原點,
∴ ,
解得 ,
∴y1= (x+2)2﹣
,
∵y2= (x﹣3)2+n經過點A(1,3),
∴ (1﹣3)2+n=3,
解得n=1,
∴y2= (x﹣3)2+1,
當x=0時,y= (0﹣3)2+1=5.5,故②錯誤;
由圖象得,當x>1時,y1>y2 , 故③正確;
∵過點A作x軸的平行線,分別交兩條拋物線于點B,C,
∴令y=3,則 (x+2)2﹣
=3,
整理得,(x+2)2=9,
解得x1=﹣5,x2=1,
∴AB=1﹣(﹣5)=6,
∴A(1,3),B(﹣5,3);
令y=3,則 (x﹣3)2+1=3,
整理得,(x﹣3)2=4,
解得x1=5,x2=1,
∴C(5,3),
∴AC=5﹣1=4,
∴BC=10,
∴y軸是線段BC的中垂線,故④正確.
所以答案是①③④.
【考點精析】本題主要考查了二次函數的性質的相關知識點,需要掌握增減性:當a>0時,對稱軸左邊,y隨x增大而減。粚ΨQ軸右邊,y隨x增大而增大;當a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減小才能正確解答此題.
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點O為坐標原點,拋物線y=x2+bx+c交x軸于A、B兩點,交y軸于點C,直線y=x﹣3經過B、C兩點.
(1)求拋物線的解析式;
(2)過點C作直線CD⊥y軸交拋物線于另一點D,點P是直線CD下方拋物線上的一個動點,且在拋物線對稱軸的右側,過點P作PE⊥x軸于點E,PE交CD于點F,交BC于點M,連接AC,過點M作MN⊥AC于點N,設點P的橫坐標為t,線段MN的長為d,求d與t之間的函數關系式(不要求寫出自變量t的取值范圍);
(3)在(2)的條件下,連接PC,過點B作BQ⊥PC于點Q(點Q在線段PC上),BQ交CD于點T,連接OQ交CD于點S,當ST=TD時,求線段MN的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=2 ,以點C為圓心,CB的長為半徑畫弧,與AB邊交于點D,將
繞點D旋轉180°后點B與點A恰好重合,則圖中陰影部分的面積為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知ED為⊙O的直徑且ED=4,點A(不與E、D重合)為⊙O上一個動點,線段AB經過點E,且EA=EB,F為⊙O上一點,∠FEB=90°,BF的延長線交AD的延長線交于點C.
(1)求證:△EFB≌△ADE;
(2)當點A在⊙O上移動時,直接回答四邊形FCDE的最大面積為多少.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀下面材料:如圖1,在平面直角坐標系xOy中,直線y1=ax+b與雙曲線y2= 交于A(1,3)和B(﹣3,﹣1)兩點,觀察圖象可知:①當x=﹣3或1時,y1=y2;②當﹣3<x<0或x>1時,y1>y2;即通過觀察函數的圖象,可以得到不等式ax+b>
的解集.
有這樣一個問題:求不等式x3+4x2﹣x﹣4>0的解集.
艾斯柯同學類比以上知識的研究方法,用函數與方程的思想對不等式的解法進行了探究,請將他下面的②③④補充完整:
①當x=0時,原不等式不成立:當x>0時,原不等式可以轉化為x2+4x﹣1> ;當x<0時,原不等式可以轉化為x2+4x﹣1<
.
②構造函數,畫出圖象
設y3=x2+4x﹣1,y4= 在同一坐標系中分別畫出這兩個函數的圖象.
雙曲線y4= 如圖2所示,請在此坐標系中直接畫出拋物線y3=x2+4x﹣1(可不列表);
③利用圖象,確定交點橫坐標
觀察所畫兩個函數的圖象,猜想并通過代入函數解析式驗證可知:滿足y3=y4的所有x的值為
④借助圖象,寫出解集
結合(1)的討論結果,觀察兩個函數的圖象可知:不等式x3+4x2﹣x﹣4>0的解集為
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函數y= 在第一象限的圖象經過點B,則△OAC與△BAD的面積之差S△OAC﹣S△BAD為( )
A.36
B.12
C.6
D.3
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一次函數y=kx+2的圖象與反比例函數y= 的圖象交于點P,P在第一象限,PA⊥x軸于點A,PB⊥y軸于點B,一次函數的圖象分別交x軸、y軸于點C、D,且S△PBD=4,
=
.
(1)求一次函數與反比例函數的解析式;
(2)根據圖象直接寫出當x>0時,一次函數的值大于反比例函數值的x的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在已知的△ABC中,按以下步驟作圖: ①分別以B、C為圓心,以大于 BC的長為半徑作弧,兩弧相交于兩點M、N;②作直線MN交AB于點D,連接CD,若CD=AC,∠A=50°,則∠B=( )
A.50°
B.45°
C.30°
D.25°
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知點A(1,0),B(1﹣a,0),C(1+a,0)(a>0),點P在以D(4,4)為圓心,1為半徑的圓上運動,且始終滿足∠BPC=90°,則a的最大值是 .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com