(1)證明:連接OA,
∵∠B=30°,
∴∠AOC=60°,
可得∠OAC=60°,

又∠CAD=30°,
∴∠OAD=90°,
所以AD是⊙O的切線;
(2)∵OC⊥AB,OC是半徑,
弧AC=弧BC,
∴AC=BC,
∴∠BAC=∠B=30°,
∴sin∠BAC=

.
分析:(1)連接OA,由已知∠B=∠CAD=30°,所以得∠AOC=60°,繼而可得∠OAC=60°,又∠CAD=30°,所以∠OAD=90°,問題得證;
(2)由于OD⊥AB,OC是半徑,利用垂徑定理可知OC是AB的垂直平分線,那么CA=CB,而∠B=30°,則∠BAC=30°,進而求出其正弦值.
點評:本題考查了垂徑定理、圓周角定理、切線的判定和30°角的正弦值.