解:(1)∵拋物線與y軸交于點C(0,-1),且對稱軸x=1, ∴ ![]() ![]() ∴拋物線解析式為y= ![]() ![]() ![]() ![]() ∴A(-1,0),B(3,0); (2)設在x軸下方的拋物線上存在D(a, ![]() ![]() 作DM⊥x軸于M,則S四邊形ABDC=S△AOC+S梯形OCDM+S△BMD, ∴S四邊形ABCD= ![]() ![]() ![]() = ![]() ![]() ![]() ![]() ![]() ![]() ![]() =- ![]() ![]() ∴由- ![]() ![]() ∴D的縱坐標為: ![]() ![]() ![]() ∴點D的坐標為(1, ![]() (3)①當AB為邊時,只要PQ∥AB,且PQ=AB=4即可,又知點Q在y軸上,所以點P的橫坐標為-4或4, 當x=-4時,y=7;當x=4時,y= ![]() 所以此時點P1的坐標為(-4,7),P2的坐標為(4, ![]() ②當AB為對角線時,只要線段PQ與線段AB互相平分即可,線段AB中點為G,PQ必過G點且與y軸交于Q點,過點P作x軸的垂線交于點H,可證得△PHG≌△QOG, ∴GO=GH, ∵線段AB的中點G的橫坐標為1, ∴此時點P橫坐標為2,由此當x=2時,y=-1, ∴這是有符合條件的點P3(2,-1), ∴所以符合條件的點為:P1的坐標為(-4,7),P2的坐標為(4, ![]() |
![]() ![]() |
科目:初中數學 來源: 題型:
如圖拋物線與x軸交于A、B兩點,與y軸交于點C(0.
).且對稱抽x=l.
(1)求出拋物線的解析式及A、B兩點的坐標;
(2)在x軸下方的拋物線上是否存在點D,使四邊形ABDC的面積為3.若存在,求出點D的坐標;若不存在.說明理由(使用圖1);
(3)點Q在y軸上,點P在拋物線上,要使Q、P、A、B為頂點的四邊形是平行四邊形,請求出所有滿足條件的點P的坐標(使用圖2).
查看答案和解析>>
科目:初中數學 來源: 題型:
查看答案和解析>>
科目:初中數學 來源:2011年初中畢業升學考試(四川廣安卷)數學 題型:解答題
如圖拋物線與x軸交于A、B兩點,與y軸交于點C(0.
).且對稱抽x=l.
(1)求出拋物線的解析式及A、B兩點的坐標;
(2)在x軸下方的拋物線上是否存在點D,使四邊形ABDC的面積為3.若存在,求出點D的坐標;若不存在.說明理由(使用圖1);
(3)點Q在y軸上,點P在拋物線上,要使Q、P、A、B為頂點的四邊形是平行四邊形,請求出所有滿足條件的點P的坐標(使用圖2).
查看答案和解析>>
科目:初中數學 來源:2011年初中畢業升學考試(四川廣安卷)數學 題型:解答題
如圖拋物線與x軸交于A、B兩點,與y軸交于點C(0.
).且對稱抽x=l.
(1)求出拋物線的解析式及A、B兩點的坐標;
(2)在x軸下方的拋物線上是否存在點D,使四邊形ABDC的面積為3.若存在,求出點D的坐標;若不存在.說明理由(使用圖1);
(3)點Q在y軸上,點P在拋物線上,要使Q、P、A、B為頂點的四邊形是平行四邊形,請求出所有滿足條件的點P的坐標(使用圖2).
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com