【題目】如圖,AB為⊙O的直徑,C是⊙O上一點,過點C的直線交AB的延長線于點D,AE⊥DC,垂足為E,F是AE與⊙O的交點,AC平分∠BAE.
(1)求證:DE是⊙O的切線;
(2)若AE=6,∠D=30°,求圖中陰影部分的面積.
【答案】(1)證明過程見解析;(2)
【解析】
試題分析:(1)連接OC,先證明∠OAC=∠OCA,進而得到OC∥AE,于是得到OC⊥CD,進而證明DE是⊙O的切線;(2)分別求出△OCD的面積和扇形OBC的面積,利用S陰影=S△COD﹣S扇形OBC即可得到答案.
試題解析:(1)連接OC, ∵OA=OC, ∴∠OAC=∠OCA, ∵AC平分∠BAE, ∴∠OAC=∠CAE,
∴∠OCA=∠CAE, ∴OC∥AE, ∴∠OCD=∠E, ∵AE⊥DE, ∴∠E=90°, ∴∠OCD=90°, ∴OC⊥CD,
∵點C在圓O上,OC為圓O的半徑, ∴CD是圓O的切線;
(2)在Rt△AED中, ∵∠D=30°,AE=6, ∴AD=2AE=12, 在Rt△OCD中,∵∠D=30°,
∴DO=2OC=DB+OB=DB+OC, ∴DB=OB=OC=AD=4,DO=8,
∴CD==
=4
, ∴S△OCD=
=
=8
, ∵∠D=30°,∠OCD=90°,
∴∠DOC=60°, ∴S扇形OBC=×π×OC2=
, ∵S陰影=S△COD﹣S扇形OBC ∴S陰影=8
﹣
,
∴陰影部分的面積為8﹣
.
科目:初中數學 來源: 題型:
【題目】下列說法:( )
①圓錐的體積等于圓柱體積的三分之一;
②長方體有12條棱和8個頂點;
③圓的半徑擴大5倍,周長也擴大5倍;
④直線外一點與直線上各點連接的所有線段中,垂線段最短。
其中正確的有多少個?
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】“校園安全”受到全社會的廣泛關注,東營市某中學對部分學生就校園安全知識的了解程度,采用隨機抽樣調查的方式,并根據收集到的信息進行統計,繪制了下面兩幅尚不完整的統計圖.請你根據統計圖中所提供的信息解答下列問題:
(1)接受問卷調查的學生共有_______人,扇形統計圖中“基本了解”部分所對應扇形的圓心角為_______°;
(2)請補全條形統計圖;
(3)若該中學共有學生900人,請根據上述調查結果,估計該中學學生中對校園安全知識達到“了解”和“基本了解”程度的總人數;
(4)若從對校園安全知識達到“了解”程度的3個女生和2個男生中隨機抽取2人參加校園安全知識競賽,請用樹狀圖或列表法求出恰好抽到1個男生和1個女生的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某超市為慶祝開業舉辦大酬賓抽獎活動,凡在開業當天進店購物的顧客,都能獲得一次抽獎的機會,抽獎規則如下:在一個不透明的盒子里裝有分別標有數字1、2、3、4的4個小球,它們的形狀、大小、質地完全相同,顧客先從盒子里隨機取出一個小球,記下小球上標有的數字,然后把小球放回盒子并攪拌均勻,再從盒子中隨機取出一個小球,記下小球上標有的數字,并計算兩次記下的數字之和,若兩次所得的數字之和為8,則可獲得50元代金券一張;若所得的數字之和為6,則可獲得30元代金券一張;若所得的數字之和為5,則可獲得15元代金券一張;其他情況都不中獎.
(1)請用列表或樹狀圖(樹狀圖也稱樹形圖)的方法(選其中一種即可),把抽獎一次可能出現的結果表示出來;
(2)假如你參加了該超市開業當天的一次抽獎活動,求能中獎的概率P.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com