【題目】如圖,O是正△ABC內一點,OA=3,OB=4,OC=5,將線段BO以點B為旋轉中心逆時針旋轉60°得到線段BO′,下列結論:①△BO′A可以由△BOC繞點B逆時針旋轉60°得到;②點O與O′的距離為4;③∠AOB=150°;④S四邊形AOBO;⑤S△AOC+S△AOB=
.其中正確的結論是( 。
A.①②③⑤B.①②③④C.①②③④⑤D.①②③
【答案】A
【解析】
證明△BO′A≌△BOC,又∠OBO′=60°,所以△BO′A可以由△BOC繞點B逆時針旋轉60°得到,故結論①正確;由△OBO′是等邊三角形,可知結論②正確;在△AOO′中,三邊長為3,4,5,這是一組勾股數,故△AOO′是直角三角形;進而求得∠AOB=150°,故結論③正確;S四邊形AOBO=S△AOO+S△OBO,可得結論④錯誤;如圖②,將△AOB繞點A逆時針旋轉60°,使得AB與AC重合,點O旋轉至O″點.利用旋轉變換構造等邊三角形與直角三角形,將S△AOC+S△AOB轉化為S△COO+S△AOO,計算可得結論⑤正確.
由題意可知,∠1+∠2=∠3+∠2=60°,∴∠1=∠3,
又∵OB=O′B,AB=BC,
∴△BO′A≌△BOC,又∵∠OBO′=60°,
∴△BO′A可以由△BOC繞點B逆時針旋轉60°得到,
故結論①正確;
如圖①,連接OO′,
∵OB=O′B,且∠OBO′=60°,
∴△OBO′是等邊三角形,
∴OO′=OB=4.
故結論②正確;
∵△BO′A≌△BOC,∴O′A=5.
在△AOO′中,三邊長為3,4,5,這是一組勾股數,
∴△AOO′是直角三角形,∠AOO′=90°,
∴∠AOB=∠AOO′+∠BOO′=90°+60°=150°,
故結論③正確;
S四邊形AOBO′=S△AOO′+S△OBO′=,
故結論④錯誤;
如圖②所示,將△AOB繞點A逆時針旋轉60°,使得AB與AC重合,點O旋轉至O″點.
易知△AOO″是邊長為3的等邊三角形,△COO″是邊長為3、4、5的直角三角形,
則S△AOC+S△AOB=S四邊形AOCO″=S△COO″+S△AOO″=,
故結論⑤正確.
綜上所述,正確的結論為:①②③⑤.
故選A.
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC和△DEF中,∠ACB=∠EFD=90°,點B、F、C、D在同一直線上,已知AB⊥DE,且AB=DE,AC=6,EF=8,DB=10,則CF的長度為___________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商場計劃購進A、B兩種商品,若購進A種商品2件和B種商品1件需45元;若購進A種商品3件和B種商品2件需70元.
(1)A、B兩種商品每件的進價分別是多少元?
(2)若購進A、B兩種商品共100件,總費用不超過1000元,最多能購進A種商品多少件?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】旅游公司在景區內配置了50輛觀光車供游客租賃使用,假定每輛觀光車一天內最多能出租一次,且每輛車的日租金是x元,發現每天的營運規律如下:當x不超過100元時,觀光車能全部租出;當x超過100元時,每輛車的日租金每增加5元,租出去的觀光車就會減少1輛,已知所有觀光車每天的管理費是1000元.
(1)若某日的凈收入為5000元,且使游客得到實惠,則當天的觀光車的日租金是多少元?(注:凈收入=租車收入-管理費)
(2)設每日凈收入為w元,請寫出w與x之間的函數關系式;并求出日租金為多少時,每日凈收入最大?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了打造區域中心城市,實現攀枝花跨越式發展,我市花城新區建設正按投資計劃有序推進.花城新區建設工程部,因道路建設需要開挖土石方,計劃每小時挖掘土石方540m3 , 現決定向某大型機械租賃公司租用甲、乙兩種型號的挖掘機來完成這項工作,租賃公司提供的挖掘機有關信息如下表所示:
租金(單位:元/臺時) | 挖掘土石方量(單位:m3/臺時) | |
甲型挖掘機 | 100 | 60 |
乙型挖掘機 | 120 | 80 |
(1)若租用甲、乙兩種型號的挖掘機共8臺,恰好完成每小時的挖掘量,則甲、乙兩種型號的挖掘機各需多少臺?
(2)如果每小時支付的租金不超過850元,又恰好完成每小時的挖掘量,那么共有哪幾種不同的租用方案?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】考古學家發現了一塊古代圓形陶器殘片如圖所示,為了修復這塊陶器殘片,需要找出圓心.
(1)請利用尺規作圖確定這塊殘片的圓心O;(保留作圖痕跡,不寫作法)
(2)寫出作圖的主要依據:_______________________________________________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】將兩塊全等的含30°角的直角三角板按圖1的方式放置,已知∠BAC=∠B1A1C=30°,AB=2BC.
(1)固定三角板A1B1C,然后將三角板ABC繞點C順時針方向旋轉至圖2的位置,AB與A1C、A1B1分別交于點D、E,AC與A1B1交于點F.
①填空:當旋轉角等于20°時,∠BCB1= 度;
②當旋轉角等于多少度時,AB與A1B1垂直?請說明理由.
(2)將圖2中的三角板ABC繞點C順時針方向旋轉至圖3的位置,使AB∥CB1,AB與A1C交于點D,試說明A1D=CD.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:中,
,求證:
,下面寫出可運用反證法證明這個命題的四個步驟:
①∴,這與三角形內角和為
矛盾,②因此假設不成立.∴
,③假設在
中,
,④由
,得
,即
.這四個步驟正確的順序應是( 。
A.③④②①B.③④①②C.①②③④D.④③①②
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知某品牌的飲料有大瓶與小瓶裝之分.某超市花了2100元購進一批該品牌的飲料共800瓶,其中,大瓶和小瓶飲料的進價及售價如右表所示.
大瓶 | 小瓶 | |
進價(元/瓶) | ||
售價(元/瓶) |
(1)問:該超市購進大瓶和小瓶飲料各多少瓶?
(2)當大瓶飲料售出了200瓶,小瓶飲料售出了100瓶后,商家決定將剩下的小瓶飲料的售價降低0.5元銷售,并把其中一定數量的小瓶飲料作為贈品,在顧客一次性購買大瓶飲料時,每滿2瓶就送1瓶小瓶飲料,送完即止.請問:超市要使這批飲料售完后獲得的利潤為1075元,那么小瓶飲料作為贈品送出多少瓶?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com