【題目】如圖,在平行四邊形ABCD中,點F在AD上,且AF=AB,AE平分∠BAD交BC于點E,連接EF,BF,與AE交于點O.
(1)求證:四邊形ABEF是菱形;
(2)若四邊形ABEF的周長為40,BF=10,求AE的長及四邊形ABEF的面積.
【答案】(1)見解析;(2)AE=10,四邊形ABEF的面積=50
.
【解析】
(1)由平行四邊形的性質和角平分線得出∠BAE=∠AEB,證出BE=AB,由AF=AB得出BE=AF,即可得出結論.
(2)根據菱形的性質可得AB=10,AE⊥BF,BO=FB=5,AE=2AO,利用勾股定理計算出AO的長,進而可得AE的長.菱形的面積=對角線乘積的一半.
(1)證明∵四邊形ABCD是平行四邊形,
∴AD∥BC,
∴∠DAE=∠AEB,
∵AE平分∠BAD,
∴∠BAE=∠DAE,
∴∠BAE=∠AEB,
∴BE=AB,且AF=AB,
∴BE=AF,
又∵BE∥AF,
∴四邊形ABEF是平行四邊形,
∵AF=AB,
∴四邊形ABEF是菱形;
(2)∵四邊形ABEF為菱形,且周長為40,BF=10
∴AB=BE=EF=AF=10,AE⊥BF,BO=FB=5,AE=2AO,
在Rt△AOB中,AO=,
∴AE=2AO=10.
∴四邊形ABEF的面積=BFAE=
×10×10
=50
科目:初中數學 來源: 題型:
【題目】如圖,在四邊形ABCD中,對角線AC平分∠DAB,∠ABD=52°,∠ABC=116°,∠ACB=α°,則∠BDC的度數為( 。
A. α B. C. 90﹣α D. 90﹣
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,正方形ABCD中,AB=6,點E在邊CD上,且CD=3DE.將△ADE沿AE對折至△AFE,延長EF交邊BC于點G,連接AG、CF.下列結論:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正確結論的個數是( )
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在梯形ABCD中,∠ABC=90°,AD∥BC,AE∥CD交BC于E,∠BAE=∠EAC,O是AC的中點,AD=DC=2,下面結論:①AC=2AB;②AB=;③S△ADC=2S△ABE;④BO⊥AE,其中正確的個數是( 。
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知A,B是反比例函數y=(k>0,x>0)圖象上的兩點,BC∥x軸,交y軸于點C,動點P從坐標原點O出發,沿O→A→B→C(圖中“→”所示路線)勻速運動,終點為C,過P作PM⊥x軸,垂足為M.設三角形OMP的面積為S,P點運動時間為t,則S關于x的函數圖象大致為( )
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,四邊形ABCD為平行四邊形,∠BAD的角平分線AE交CD于點F,交BC的延長線于點E.
(1)求證:BE=CD;
(2)連接BF,若BF⊥AE,∠BEA=60°,AB=4,求平行四邊形ABCD的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,對角線AC,BD相交于點O,下列條件中,不能判斷這個平行四邊形是菱形的是( )
A. AB=ADB. ∠BAC=∠DACC. ∠BAC=∠ABDD. AC⊥BD
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】植樹節期間,市團委組織部分中學的團員去東岸濕地公園植樹.三亞市第二中學七(3)班團支部領到一批樹苗,若每人植4棵樹,還剩37棵;若每人植6棵樹,則最后一人有樹植,但不足3棵,這批樹苗共有_____棵.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知整數a1,a2,a3,a4,…滿足下列條件:a1=0,a2=﹣|a1+1|,a3=﹣|a2+2|,a4=﹣|a3+3|,……以此類推,則a2018的值為( 。
A. ﹣1007 B. ﹣1008 C. ﹣1009 D. ﹣2018
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com