【題目】已知二次函數y=ax2+bx+c(a≠0)的圖象如圖所示,則下列結論: ① abc<0;② 2a+b=0; ③ b2-4ac<0;④ 9a+3b+c>0; ⑤ c+8a<0.正確的結論有( 。.
A. 1個B. 2個C. 3個D. 4個
【答案】C
【解析】
由拋物線的開口方向判斷a與0的關系,由拋物線與y軸的交點判斷c與0的關系,然后根據對稱軸及拋物線與x軸交點情況進行推理,進而對所得結論進行判斷.
解:拋物線開口向下,得:a<0;拋物線的對稱軸為x=-=1,則b=-2a,2a+b=0,b=-2a,故b>0;拋物線交y軸于正半軸,得:c>0.
∴abc<0, ①正確;
2a+b=0,②正確;
由圖知:拋物線與x軸有兩個不同的交點,則△=b2-4ac>0,故③錯誤;
由對稱性可知,拋物線與x軸的正半軸的交點橫坐標是x=3,所以當x=3時,y= 9a+3b+c=0,故④錯誤;
觀察圖象得當x=-2時,y<0,
即4a-2b+c<0
∵b=-2a,
∴4a+4a+c<0
即8a+c<0,故⑤正確.
正確的結論有①②⑤,
故選:C
科目:初中數學 來源: 題型:
【題目】已知關于x的方程x2-(m+2)x+(2m-1)=0。
(1)求證:方程恒有兩個不相等的實數根;
(2)若此方程的一個根是1,請求出方程的另一個根,并求以此兩根為邊長的直角三角形的周長。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,弦EF⊥AB,垂足為C,∠A=30°,連結BE,M為BE的中點,連結MF,過點F作直線FD∥AE,交AB的延長線于點D.
(1)求證:FD是⊙O的切線;
(2)若MF=,求⊙O的半徑.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一次函數y1=kx+b的圖象與反比例函數y2=的圖象交于A(2,3),B(6,n)兩點.
(1)分別求出一次函數與反比例函數的解析式;
(2)求△OAB的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中拋物線交
軸于點
,交
軸于點
,
兩點橫坐標為
和
,
點縱坐標為
.
求拋物線的解析式;
動點
在第四象限且在拋物線上,當
面積最大時,求
點坐標,并求
面積的最大值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】甲、乙兩家草莓采摘園的草莓銷售價格相同,“春節期間”,兩家采摘園將推岀優惠方案,甲園的優惠方案是:游客進園需購買門票,采摘的草莓六折優惠:乙園的優惠方案是:游客進園不需購買門票,采摘園的草莓按售價付款,優惠期間,設游客的草莓采摘量為x(千克),在甲園所需總費用為y甲(元),在乙園所需總費用為y乙元,y甲、y乙與x之間的函數關系如圖所示.
(1)求y甲、y乙與x的函數表達式;
(2)在春節期間,李華一家三口準備去草莓園采摘草莓,采摘的草莓合在一起支付費用,則李華一家應選擇哪家草莓園更劃算?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】由兩個可以自由轉動的轉盤、每個轉盤被分成如圖所示的幾個扇形、游戲者同時轉動兩個轉盤,如果一個轉盤轉出了紅色,另一轉盤轉出了藍色,游戲者就配成了紫色下列說法正確的是( 。
A. 兩個轉盤轉出藍色的概率一樣大
B. 如果A轉盤轉出了藍色,那么B轉盤轉出藍色的可能性變小了
C. 先轉動A 轉盤再轉動B 轉盤和同時轉動兩個轉盤,游戲者配成紫色的概率不同
D. 游戲者配成紫色的概率為
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商場經營A種品牌的玩具,購進時的單價是30元,根據市場調查:在一段時間內,銷售單價是40元時,銷售量是600件,而銷售單價每漲1元,就會少售出10件玩具.
(1)不妨設該種品牌玩具的銷售單價為x元(x>40),請用含x的代數式表示該玩具的銷售量.
(2)若玩具廠規定該品牌玩具銷售單價不低于44元,且商場要完成不少于450件的銷售任務,求商場銷售該品牌玩具獲得的最大利潤是多少?
(3)該商場計劃將(2)中所得的利潤的一部分資金采購一批B種玩具并轉手出售,根據市場調查并準備兩種方案,方案①:如果月初出售,可獲利15%,并可用本和利再投資C種玩具,到月末又可獲利10%;方案②:如果只到月末出售可直接獲利30%,但要另支付倉庫保管費350元,請問商場如何使用這筆資金,采用哪種方案獲利較多?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com