【題目】閱讀例題,回答問題:
例題:已知二次三項式:x2﹣4x+m有一個因式是x+3,求另一個因式以及m的值.
解:設另一個因式為x+n,得x2﹣4x+m=(x+3)(x+n),則x2﹣4x+m=x2+(n+3)x+3n.
∴
∴
∴另一個因式為x﹣7,m=21.
仿照以上方法解答下面的問題:
已知二次三項式2x2+3x+k有一個因式是2x﹣5,求另一個因式以及k的值.
科目:初中數學 來源: 題型:
【題目】如圖,已知△ABC內接于⊙O,AB為⊙O的直徑,BD⊥AB,交AC的延長線于點D.
(1)E為BD的中點,連結CE,求證:CE是⊙O的切線;
(2)若AC=3CD,求∠A的大。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校為了了解全校400名學生參加課外鍛煉的情況,隨機對40名學生一周內平均每天參加課外鍛煉的時間進行了調查,結果如下:(單位:分)
40 21 35 24 40 38 23 52 35 62 36 15 51 45 40 42 40 32 43 36
34 53 38 40 39 32 45 40 50 45 40 40 26 45 40 45 35 40 42 45
(1)補全頻率分布表和頻率分布直方圖.
分組 | 頻數 | 頻率 |
4.5﹣22.5 | 2 | 0.050 |
22.5﹣30.5 | 3 | |
30.5﹣38.5 | 10 | 0.250 |
38.5﹣46.5 | 19 | |
46.5﹣54.5 | 5 | 0.125 |
54.5﹣62.5 | 1 | 0.025 |
合計 | 40 | 1.000 |
(2)填空:在這個問題中,總體是____,樣本是____.由統計結果分析的,這組數據的平均數是38.35(分),眾數是____,中位數是_____.
(3)如果描述該校400名學生一周內平均每天參加課外鍛煉時間的總體情況,你認為用平均數、眾數、中位數中的哪一個量比較合適?
(4)估計這所學校有多少名學生,平均每天參加課外鍛煉的時間多于30分?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】將△ABC紙片的一角沿DE向下翻折,使點A落在BC邊上,且DE∥BC,如圖所示,則下列結論不成立的是( )
A. ∠AED=∠BB. AD:AB=DE:BC
C. DE=BCD. △ADB是等腰三角形
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,反比例函數y=(x<0)的圖象經過矩形OABC的對角線AC的中點M,分別與AB,BC交于點D、E,若BD=3,OA=4,則k的值為_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,以AC為直徑作⊙O,交AB于D,過點O作OE∥AB,交BC于E.
(1)求證:ED為⊙O的切線;
(2)如果⊙O的半徑為,ED=2,延長EO交⊙O于F,連接DF、AF,求△ADF的面積.
【答案】(1)證明見解析;(2)
【解析】試題分析:(1)首先連接OD,由OE∥AB,根據平行線與等腰三角形的性質,易證得≌
即可得
,則可證得
為
的切線;
(2)連接CD,根據直徑所對的圓周角是直角,即可得 利用勾股定理即可求得
的長,又由OE∥AB,證得
根據相似三角形的對應邊成比例,即可求得
的長,然后利用三角函數的知識,求得
與
的長,然后利用S△ADF=S梯形ABEF-S梯形DBEF求得答案.
試題解析:(1)證明:連接OD,
∵OE∥AB,
∴∠COE=∠CAD,∠EOD=∠ODA,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠COE=∠DOE,
在△COE和△DOE中,
∴△COE≌△DOE(SAS),
∴ED⊥OD,
∴ED是的切線;
(2)連接CD,交OE于M,
在Rt△ODE中,
∵OD=32,DE=2,
∵OE∥AB,
∴△COE∽△CAB,
∴AB=5,
∵AC是直徑,
∵EF∥AB,
∴S△ADF=S梯形ABEFS梯形DBEF
∴△ADF的面積為
【題型】解答題
【結束】
25
【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個公共點M(1,0),且a<b.
(1)求b與a的關系式和拋物線的頂點D坐標(用a的代數式表示);
(2)直線與拋物線的另外一個交點記為N,求△DMN的面積與a的關系式;
(3)a=﹣1時,直線y=﹣2x與拋物線在第二象限交于點G,點G、H關于原點對稱,現將線段GH沿y軸向上平移t個單位(t>0),若線段GH與拋物線有兩個不同的公共點,試求t的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中.AB=AC,AD⊥BC于D,作DE⊥AC于E,F是AB中點,連EF交AD于點G.
(1)求證:AD2=ABAE;
(2)若AB=3,AE=2,求的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小米手機越來越受到大眾的喜愛,各種款式相繼投放市場,某店經營的A款手機去年銷售總額為50000元,今年每部銷售價比去年降低400元,若賣出的數量相同,銷售總額將比去年減少20%.
(1)今年A款手機每部售價多少元?
(2)該店計劃新進一批A款手機和B款手機共60部,且B款手機的進貨數量不超過A款手機數量的兩倍,應如何進貨才能使這批手機獲利最多?A,B兩款手機的進貨和銷售價格如下表:
A款手機 | B款手機 | |
進貨價格(元) | 1100 | 1400 |
銷售價格(元) | 今年的銷售價格 | 2000 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com