【題目】如圖,在Rt△ABC中,∠ACB=90°.
(1)請用直尺和圓規作∠ABC的平分線,交AC于點D(保留作圖痕跡,不要求寫作法和證明);
(2)在(1)作出的圖形中,若∠A=30°,BC=,則點D到AB的距離等于 .
科目:初中數學 來源: 題型:
【題目】某校為選拔一名選手參加“美麗邵陽,我為家鄉做代言”主題演講比賽,經研究,按圖所示的項目和權數對選拔賽參賽選手進行考評(因排版原因統計圖不完整).下表是李明、張華在選拔賽中的得分情況:
項目 選手 | 服裝 | 普通話 | 主題 | 演講技巧 |
李明 | 85 | 70 | 80 | 85 |
張華 | 90 | 75 | 75 | 80 |
結合以上信息,回答下列問題:
(1)求服裝項目的權數及普通話項目對應扇形的圓心角大;
(2)求李明在選拔賽中四個項目所得分數的眾數和中位數;
(3)根據你所學的知識,幫助學校在李明、張華兩人中選擇一人參加“美麗邵陽,我為家鄉做代言”主題演講比賽,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,等腰直角三角形ABC在平面直角坐標系中,直角邊AC在x軸上,O為AC的中點,點A的坐標為(1,0),將△ABC繞點A順時針旋轉135°,使斜邊AB的對應邊A′B′與x軸重合,則點C的對應點C'的坐標為( 。
A. (2,2)B. (1+ ,
)C. (1+
,2)D. (2
,2+
)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB為⊙O的直徑,ED切⊙O于點C,AD交⊙O于點F,連接AC,BF,且BF∥CD.
(1)求證:AC平分∠BAD;
(2)若⊙O的半徑為,AF=2,求CD的長度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,將矩形ABCD沿DE折疊,使頂點A落在DC上的點A′處,然后將矩形展平,沿EF折疊,使頂點A落在折痕DE上的點G處.再將矩形ABCD沿CE折疊,此時頂點B恰好落在DE上的點H處.如圖2.
(1)求證:EG=CH;
(2)已知AF=,求AD和AB的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC是⊙O的內接三角形,直徑AB=10.sinA=,點D為線段AC上一動點(不運動至端點A、C),作DF⊥AB于F,連結BD,井延長BD交⊙O于點H,連結CF.
(1)當DF經過圓心O時,求AD的長;
(2)求證:△ACF∽△ABD;
(3)求CFDH的最大值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,O為原點,點A(8,0)、點B(0,4),點C、D分別是邊OA、AB的中點.將△ACD繞點A順時針方向旋轉,得△AC′D′,記旋轉角為α.
(I)如圖①,連接BD′,當BD′∥OA時,求點D′的坐標;
(II)如圖②,當α=60°時,求點C′的坐標;
(III)當點B,D′,C′共線時,求點C的坐標(直接寫出結果即可).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB為⊙O直徑,P點為半徑OA上異于O點和A點的一個點,過P點作與直徑AB垂直的弦CD,連接AD,作BE⊥AB,OE∥AD交BE于E點,連接AE、DE、AE交CD于F點.
(1)求證:DE為⊙O切線;
(2)若⊙O的半徑為3,sin∠ADP=,求AD;
(3)請猜想PF與FD的數量關系,并加以證明.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com