【題目】請閱讀下列材料:
問題:如圖1,在等邊三角形ABC內有一點P,且PA=2,PB=,PC=1、求∠BPC度數的大小和等邊三角形ABC的邊長.
李明同學的思路是:將△BPC繞點B逆時針旋轉60°,畫出旋轉后的圖形(如圖2),連接PP′,可得△P′PC是等邊三角形,而△PP′A又是直角三角形(由勾股定理的逆定理可證),從而得到∠BPC=∠AP′B=__________;,進而求出等邊△ABC的邊長為__________;
問題得到解決.
請你參考李明同學的思路,探究并解決下列問題:如圖3,在正方形ABCD內有一點P,且PA=,BP=
,PC=1.求∠BPC度數的大小和正方形ABCD的邊長.
【答案】(1)150°,;(2)135°,
【解析】試題分析:(1)利用旋轉的性質,得到全等三角形.
(2)利用(1)中的解題思路,把△BPC,旋轉,到△BP’A,連接PP’,BP’,容易證明△APP’是直角三角形,∠BP’E=45°,已知邊BP’=BP=,BE=BP’=1,勾股定理可求得正方形邊長.
(1)150°
(2)將△BPC繞點B逆時針旋轉90°,得△BP′A,則△BPC≌△BP′A.
∴AP′=PC=1,BP=BP′=;
連接PP′,在Rt△BP′P中,
∵BP=BP′=,∠PBP′=90°,
∴PP′=2,∠BP′P=45°;
在△AP′P中,AP′=1,PP′=2,AP=,
∵,即AP′2+PP′2=AP2;
∴△AP′P是直角三角形,即∠AP′P=90°,
∴∠AP′B=135°,
∴∠BPC=∠AP′B=135°.
過點B作BE⊥AP′,交AP′的延長線于點E;則△BEP′是等腰直角三角形,
∴∠EP′B=45°,
∴EP′=BE=1,
∴AE=2;
∴在Rt△ABE中,由勾股定理,得AB=;
∴∠BPC=135°,正方形邊長為.
科目:初中數學 來源: 題型:
【題目】為了了解全校七年級300名學生的視力情況,駱老師從中抽查了50名學生的視力情況、針對這個問題,下面說法正確的是( )
A. 300名學生是總體B. 每名學生是個體
C. 50名學生的視力情況是所抽取的一個樣本D. 這個樣本容量是300
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商店經銷一種雙肩包,已知這種雙肩包的成本價為每個30元.市場調查發現,這種雙肩包每天的銷售量y(單位:個)與銷售單價x(單位:元)有如下關系:y=-x+60(30≤x≤60).
設這種雙肩包每天的銷售利潤為w元.
(1)求w與x之間的函數解析式;
(2)這種雙肩包銷售單價定為多少元時,每天的銷售利潤最大?最大利潤是多少元?
(3)如果物價部門規定這種雙肩包的銷售單價不高于48元,該商店銷售這種雙肩包每天要獲得200元的銷售利潤,銷售單價應定為多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某個觀測站測得:空氣中pm2.5含量為每立方米0.0000023g,則將0.0000023用科學記數法表示為( 。
A. 2.3×10﹣7 B. 2.3×10﹣6 C. 2.3×10﹣5 D. 2.3×10﹣4
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com