【題目】已知非等腰三角形的兩邊長分別是2 cm和9 cm,如果第三邊的長為整數,那么第三邊的長為( )
A. 8 cm或10 cm B. 8 cm或9 cm C. 8 cm D. 10 cm
科目:初中數學 來源: 題型:
【題目】(1)問題背景
如圖①,BC是⊙O的直徑,點A在⊙O上,AB=AC,P為BmC上一動點(不與B,C重合),求證: PA=PB+PC.
小明同學觀察到圖中自點A出發有三條線段AB,AP,AC,且AB=AC,這就為旋轉作了鋪墊.于是,小明同學有如下思考過程:
第一步:將△PAC繞著點A順時針旋轉90°至△QAB(如圖①);
第二步:證明Q,B,P三點共線,進而原題得證.
請你根據小明同學的思考過程完成證明過程.
(2)類比遷移
如圖②,⊙O的半徑為3,點A,B在⊙O上,C為⊙O內一點,AB=AC,AB⊥AC,垂足為A,求OC的最小值.
(3)拓展延伸
如圖③,⊙O的半徑為3,點A,B在⊙O上,C為⊙O內一點,AB=AC,AB⊥AC,垂足為A,則OC的最小值為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點P為∠AOB內一點,分別作出點P關于OA、OB的對稱點P1、P2 , 連接P1P2交OA于M,交OB于N,若P1P2=6,則△PMN的周長為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(本題滿分12分)如圖1,為美化校園環境,某校計劃在一塊長為60米,寬為40米的長方形空地上修建一個長方形花圃,并將花圃四周余下的空地修建成同樣寬的通道,設通道寬為米.
(1)花圃的面積為 (用含
的式子表示);
(2)如果通道所占面積是整個長方形空地面積的,求出此時通道的寬;
(3)已知某園林公司修建通道、花圃的造價(元)、
(元)與修建面積
之間的函數關系如圖2所示,如果學校決定由該公司承建此項目,并要求修建的通道的寬度不少于2米且不超過10米,那么通道寬為多少時,修建的通道和花圃的總造價為105920元
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】問題發現:
()如圖①,
中,
,
,
,點
是
邊上任意一點,則
的最小值為__________.
()如圖②,矩形
中,
,
,點
、點
分別在
、
上,求
的最小值.
()如圖③,矩形
中,
,
,點
是
邊上一點,且
,點
是
邊上的任意一點,把
沿
翻折,點
的對應點為點
,連接
、
,四邊形
的面積是否存在最小值,若存在,求這個最小值及此時
的長度;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com