精英家教網 > 初中數學 > 題目詳情

【題目】如圖,已知CE是圓O的直徑,點B在圓O上由點E順時針向點C運動(點B不與點E、C重合),弦BDCE于點F,且BD=BC,過點B作弦CD的平行線與CE的延長線交于點A.

(1)若圓O的半徑為2,且點D為弧EC的中點時,求圓心O到弦CD的距離;

(2)當DFDB=CD2時,求∠CBD的大;

(3)若AB=2AE,且CD=12,求△BCD的面積.

【答案】(1);(2)45°;(3)72.

【解析】試題分析:(1)過OOHCDH,根據垂徑定理求出點O到H的距離即可;

(2)根據相似三角形的判定與性質,先證明△CDF∽△BDC,再根據相似三角形的性質可求解;

(3)連接BE,BO,DO,并延長BO至H點,利用相似三角形的性質判定,求得BH的長,然后根據三角形的面積求解即可.

試題解析:(1)如圖,過OOHCDH,

∵點D為弧EC的中點,

∴弧ED=CD,

∴∠OCH=45°,

OH=CH,

∵圓O的半徑為2,即OC=2,

OH=;

(2)∵當DFDB=CD2時,,

又∵∠CDF=BDC,

∴△CDF∽△BDC,

∴∠DCF=DBC,

∵∠DCF=45°,

∴∠DBC=45°;

(3)如圖,連接BE,BO,DO,并延長BOH點,

BD=BC,OD=OC,

BH垂直平分CD,

又∵ABCD,

∴∠ABO=90°=EBC,

∴∠ABE=OBC=OCB,

又∵∠A=A,

∴△ABE∽△ACB,

,即AB2=AE×AC,

AC=,

AE=x,則AB=2x,

AC=4x,EC=3x,

OE=OB=OC=

CD=12,

CH=6,

ABCH,

∴△AOB∽△COH,

,即

解得x=5,OH=4.5,OB=7.5,

BH=BO+OH=12,

∴△BCD的面積=×12×12=72.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線yx+1與拋物線yx2+bx+c交于AB4,5)兩點,點Ax軸上.

1)求拋物線的解析式;

2)點E是線段AB上一動點(點AB除外),過點Ex軸的垂線交拋物線于點F,當線段EF的長度最大時,求點E的坐標;

3)在(2)的條件下,拋物線上是否存在一點P,使∠PEF90°?若存在,求出點P的坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】農民也能報銷醫療費了!”這是國家推行新型農村醫療合作的成果.村民只要每人每年交10元錢,就可以加入合作醫療,每年先由自己支付醫療費,年終時可得到按一定比例返回的返回款,這一舉措極大地增強了農民抵御大病風險的能力.小華與同學隨機調查了他們鄉的一些農民,根據收集到的數據繪制了以下的統計圖.

根據以上信息,解答以下問題:

(1)本次調查了 名村民,被調查的村民中,有 人參加合作醫療得到了返回款?

(2)若該鄉有10000名村民,請你估計有多少人參加了合作醫療?要使兩年后參加合作醫療的人數增加到9680人,假設這兩年的年平均增長率相同,求年平均增長率.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,拋物線)與軸交于點,與軸交于兩點,其中點的坐標為,拋物線的對稱軸交軸于點,,并與拋物線的對稱軸交于點.現有下列結論:①;②;③;④.其中所有正確結論的序號是______

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】兩個全等的等腰直角三角形,斜邊長為2,按如圖放置,其中一個三角形45°角的項點與另一個三角形的直角頂點A重合,若三角形ABC固定,當另一個三角形繞點A旋轉時,它的角邊和斜邊所在的直線分別與邊BC交于點E、F,設BF=CE=關于的函數圖象大致是(

A.B.C.D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在ABC中,BA=BC,以AB為直徑的⊙O分別交AC,BC于點D,EBC的延長線與⊙O的切線AF交于點F

(1)求證:∠ABC=2CAF;

(2)若AC=2CEEB=1:4,求CE,AF的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在一空曠場地上設計一落地為矩形ABCD的小屋,AB+BC=10m,拴住小狗的10m長的繩子一端固定在B點處,小狗在不能進入小屋內的條件下活動,其可以活動的區域面積為Sm2.

1)如圖1,若BC=4m,則S=_____m2

2)如圖2,現考慮在(1)中矩形ABCD小屋的右側以CD為邊拓展一正△CDE區域,使之變成落地為五邊形ABCED的小屋,其他條件不變,則在BC的變化過程中,當S取得最小值時,邊BC的長為____m

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】定義一種新運算:觀察下列式:

13=1×4+3=7 3⊙(﹣1=3×41=11 54=5×4+4=24 4⊙(﹣3=4×43=13

1)請你想一想:ab= ;

2)若a≠b,那么ab ba(填入“=”“≠”

3)若a⊙(﹣2b=3,請計算 ab)⊙(2a+b)的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】閱讀下列材料:

已知實數mn滿足(2m2n21)(2m2n21)80,試求2m2n2的值.

解:設2m2n2t,則原方程變為(t1)(t1)80,整理得t2180t281,

所以t=土9,因為2m2n20,所以2m2n29.

上面這種方法稱為換元法,把其中某些部分看成一個整休,并用新字母代替(即換元),則能使復雜的問題簡單化.

根據以上閱讀材料內容,解決下列問題,并寫出解答過程.

1)已知實數xy,滿足(2x22y23)(2x22y23)27,求x2y2的值.

2)已知RtACB的三邊為a、b、cc為斜邊),其中a、b滿足(a2b2)(a2b24)5,求RtACB外接圓的半徑.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视