【題目】光華農機租賃公司共有50臺聯合收割機,其中甲型20臺,乙型30臺,先將這50臺聯合收割機派往A、B兩地區收割小麥,其中30臺派往A地區,20臺派往B地區.兩地區與該農機租賃公司商定的每天的租賃價格見表:
每臺甲型收割機的租金 | 每臺乙型收割機的租金 | |
A地區 | 1800 | 1600 |
B地區 | 1600 | 1200 |
(1)設派往A地區x臺乙型聯合收割機,租賃公司這50臺聯合收割機一天獲得的租金為y(元),求y與x間的函數關系式,并寫出x的取值范圍;
(2)若使農機租賃公司這50臺聯合收割機一天獲得的租金總額不低于79 600元,說明有多少種分配方案,并將各種方案設計出來;
(3)如果要使這50臺聯合收割機每天獲得的租金最高,請你為光華農機租賃公司提一條合理化建議.
【答案】
【1】
【2】
【解析】
(1)根據題意和表格中的數據可以得到y關于x的函數關系式;
(2)根據題意可以得到相應的不等式,從而可以解答本題;
(3)根據(1)中的函數解析式和一次函數的性質可以解答本題.
解:(1)設派往A地區x臺乙型聯合收割機,則派往B地區x臺乙型聯合收割機為(30﹣x)臺,派往A、B地區的甲型聯合收割機分別為(30﹣x)臺和(x﹣10)臺,
∴y=1600x+1200(30﹣x)+1800(30﹣x)+1600(x﹣10)=200x+74000(10≤x≤30);
(2)由題意可得,
200x+74000≥79600,得x≥28,
∴28≤x≤30,x為整數,
∴x=28、29、30,
∴有三種分配方案,
方案一:派往A地區的甲型聯合收割機2臺,乙型聯合收割機28臺,其余的全派往B地區;
方案二:派往A地區的甲型聯合收割機1臺,乙型聯合收割機29臺,其余的全派往B地區;
方案三:派往A地區的甲型聯合收割機0臺,乙型聯合收割機30臺,其余的全派往B地區;
(3)派往A地區30臺乙型聯合收割機,20臺甲型聯合收割機全部派往B地區,使該公司50臺收割機每天獲得租金最高,
理由:∵y=200x+74000中y隨x的增大而增大,
∴當x=30時,y取得最大值,此時y=80000,
∴派往A地區30臺乙型聯合收割機,20臺甲型聯合收割機全部派往B地區,使該公司50臺收割機每天獲得租金最高.
本題考查一次函數的性質,解題關鍵是明確題意,找出所求問題需要的條件,利用一次函數和不等式的性質解答.
科目:初中數學 來源: 題型:
【題目】(本小題12分)小明有5張寫著不同數字的卡片,請按要求抽出卡片,完成下列各問題:
(1)從中取出2張卡片,使這2張卡片上數字的乘積最大,如何抽取?最大值是多少?
答:我抽取的2張卡片是 、 ,乘積的最大值為 .
(2)從中取出2張卡片,使這2張卡片上數字相除的商最小,如何抽。孔钚≈凳嵌嗌?
答:我抽取的2張卡片是 、 ,商的最小值為 .
(3)從中取出4張卡片,用學過的運算方法,使結果為24.如何抽?寫出運算式子.(寫出一種即可)
答:我抽取的4張卡片是 、 、 、 ,
算24的式子為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知直線AB:y=x+
分別交x軸、y軸于點B、A兩點,C(3,0),D、E分別為線段AO和線段AC上一動點,BE交y軸于點H,且AD=CE.當BD+BE的值最小時,則H點的坐標為( )
A. (0,4) B. (0,5) C. (0,) D. (0,
)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在一條南北方向的公路上,有一輛出租車停在A地,乘車的第一位客人向南走3千米下車;該車繼續向南開,又走了2千米后,上來第二位客人,第二位客人乘車向北走7千米下車,此時恰好有第三位客人上車,先向北走3千米,又調頭向南走,結果下車時出租車恰好到了A地.
(1)如果以A地為原點,向北方向為正方向,用1個單位表示1千米,在數軸上表示出第一位客人和第二位客人下車的位置;
(2)第三位客人乘車走了多少千米?
(3)規定出租車的收費標準是4千米內付7元,超過4千米的部分每千米加付1元(不足1千米按1千米算),那么該出租車司機在這三位客人中共收了多少錢?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一輛貨車從百貨大樓出發負責送貨,向東走了 5 千米到達小明家,繼續向東走了 1.5 千米到達小紅家,然后向西走了 9.5 千米到達小剛家,最后返回百貨大樓.
(1)以百貨大樓為原點,向東為正方向,1 個單位長度表示 1 千米,請你在數軸上標出小明、小紅、小剛家的位置.(小明家用點 A 表示,小紅家用點 B 表示,小剛家用點 C 表示)
(2)小明家與小剛家相距多遠?
(3)若貨車每千米耗油 0.6 升,那么這輛貨車此次送貨共耗油多少升?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,MN是半徑為1的⊙O的直徑,點A在⊙O上,∠AMN=30°,點B為劣弧AN的中點.P是直徑MN上一動點,則PA+PB的最小值為( )
A.
B.1
C.2
D.2
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,一次函數y=kx+b的圖象與x軸交點為A(﹣3,0),與y軸交點為B,且與正比例函數y=x的圖象交于點C(m,4).
(1)求m的值及一次函數y=kx+b的表達式;
(2)觀察函數圖象,直接寫出關于x的不等式x<kx+b的解集.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com