精英家教網 > 初中數學 > 題目詳情

如圖,邊長為1的正方形ABCD中,以A為圓心,1為半徑作數學公式,將一塊直角三角板的直角頂點P放置在數學公式(不包括端點B、D)上滑動,一條直角邊通過頂點A,另一條直角邊與邊BC相交于點Q,連接PC,并設PQ=x,以下我們對△CPQ進行研究.
(1)△CPQ能否為等邊三角形?若能,則求出x的值;若不能,則說明理由;
(2)求△CPQ周長的最小值;
(3)當△CPQ分別為銳角三角形、直角三角形和鈍角三角形時分別求x的取值范圍.

解:(1)假設△CPQ為等邊三角形時,
一方面x=BQ=PQ=CQ=,
另一方面,連接AQ,
∵∠PAQ=30°,∠APQ=90°,
∴∠AQP=60°,
∵∠PQC=60°,
∴∠AQB=60°,
∴∠BAQ=30°,
∴tan∠BAQ=tan30°=,
∴x=,
∴得出自相矛盾;
∴△CPQ不能為等邊三角形.

(2)△CPQ的周長=PQ+QC+CP=BQ+QC+CP=BC+PC=1+PC;
又∵PC≥AC-PA=-1,
∴△CPQ的周長≥1+-1=,
即當點P運動至點P0時,△CPQ的周長最小值是

(3)連接AC,交于P0,則P0Q=BQ=x,∠P0CQ=45°,∠CP0Q=90°;
∴P0Q=BQ=x=-1,∠PQC=∠PAB<90°,∠PCQ<90°.
①當P在上運動時,
∵∠APQ=90°,
∴0°<∠CPQ<90°,
此時△CPQ是銳角三角形,-1<x<1.
②當P與P0重合時,∠CPQ=90°,此時△CPQ是直角三角形,x=-1.
③當P在上運動時,
∵∠APC<180°,∠APQ=90°,
∴90°<∠CPQ<180°,
此時△CPQ是鈍角三角形,0<x<-1.
分析:(1)首先假設△CPQ為等邊三角形,然后可得x=BQ=PQ=CQ=,然后連接AQ,由∠BAQ的正切,可得x=,得出矛盾,即可證得△CPQ不能為等邊三角形;
(2)首先由△CPQ的周長=PQ+QC+CP,可得△CPQ周長為1+PC,然后由PC≥AC-PA,求得PC的最小值,即可求得△CPQ周長的最小值;
(3)首先連接AC,交于P0,則可得P0Q=BQ=x,∠P0CQ=45°,∠CP0Q=90°;繼而可得P0Q=BQ=x=-1,∠PQC=∠PAB<90°,∠PCQ<90°,然后從△CPQ分別為銳角三角形、直角三角形和鈍角三角形時去分析,即可求得答案.
點評:此題考查了切線的性質,三角形周長的求解方法,反證法的應用,三角函數等知識.此題綜合性很強,難度較大,解題的關鍵是注意數形結合與分類討論思想思想的應用,注意輔助線的作法.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

如圖,邊長為
π2
的正△ABC,點A與原點O重合,若將該正三角形沿數軸正方向翻滾一周,點A恰好與數軸上的點A′重合,則點A′對應的實數是
 

精英家教網

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,邊長為6的正方OABC的頂點O在坐標原點處,點A、C分別在x軸、y軸的正半軸上,點E是OA邊上的點(不與點A重合),EF⊥CE,且與正方形外角平分線AC交于點P.
(1)當點E坐標為(3,0)時,證明CE=EP;
(2)如果將上述條件“點E坐標為(3,0)”改為“點E坐標為(t,0)”,結論CE=EP是否仍然成立,請說明理由;
(3)在y軸上是否存在點M,使得四邊形BMEP是平行四邊形?若存在,用t表示點M的坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

如圖,邊長為6的正方OABC的頂點O在坐標原點處,點A、C分別在x軸、y軸的正半軸上,點E是OA邊上的點(不與點A重合),EF⊥CE,且與正方形外角平分線AC交于點P.
(1)當點E坐標為(3,0)時,證明CE=EP;
(2)如果將上述條件“點E坐標為(3,0)”改為“點E坐標為(t,0)”,結論CE=EP是否仍然成立,請說明理由;
(3)在y軸上是否存在點M,使得四邊形BMEP是平行四邊形?若存在,用t表示點M的坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖將邊長為1的正方形OAPB沿軸正方向連續翻轉2006次,點P依次落在點,,,……的位置,則的橫坐標=_________.

查看答案和解析>>

科目:初中數學 來源:2012-2013學年新人教版九年級(上)期中數學試卷(7)(解析版) 題型:解答題

如圖,邊長為6的正方OABC的頂點O在坐標原點處,點A、C分別在x軸、y軸的正半軸上,點E是OA邊上的點(不與點A重合),EF⊥CE,且與正方形外角平分線AC交于點P.
(1)當點E坐標為(3,0)時,證明CE=EP;
(2)如果將上述條件“點E坐標為(3,0)”改為“點E坐標為(t,0)”,結論CE=EP是否仍然成立,請說明理由;
(3)在y軸上是否存在點M,使得四邊形BMEP是平行四邊形?若存在,用t表示點M的坐標;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视