【題目】如圖,一次函數y=kx+b(k≠0)的圖象與反比例函數的圖象交于二、四象限內的A、B兩點,與x軸交于C點,點A的坐標為(﹣2,3),點B的坐標為(4,n).
(1)求該反比例函數和一次函數的解析式;
(2)在x軸上是否存在點P,使△APC是直角三角形?若存,求出點P的坐標;若不存在,請說明理由.
科目:初中數學 來源: 題型:
【題目】如圖,已知在Rt△OAC中,∠OCA=90°,O為坐標原點,直角頂點C在x軸的正半軸上,反比例函數y=(k>0)在第一象限的圖象經過OA的中點B,交AC于點D,連接OD.若∠A=∠COD,則直線OA的解析式為______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖是長沙九龍倉國際金融中心,位于長沙市黃興路與解放路交會處的東北角,投資160億元人民幣,總建筑面積達98萬平方米,中心主樓BC高452m,是目前湖南省第一高樓,大樓頂部有一發射塔AB,已知和BC處于同一水平面上有一高樓DE,在樓DE底端D點測得A的仰角為α,tanα=,在頂端E點測得A的仰角為45°,AE=140
m
(1)求兩樓之間的距離CD;
(2)求發射塔AB的高度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,有一座圓弧形拱橋,橋下水面寬度AB為12m,拱高CD為4m.
(1)求拱橋的半徑;
(2)有一艘寬5m的貨船,船艙頂部為長方形,并高出水面3.6m,求此貨船是否能順利通過拱橋?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為支持國家南水北調工程建設,小王家由原來養殖戶變為種植戶,經市場調查得知,當種植櫻桃的面積x不超過15畝時,每畝可獲得利潤y=1900元;超過15畝時,每畝獲得利潤y(元)與種植面積x(畝)之間的函數關系如下表(為所學過的一次函數,反比例函數或二次函數中的一種)
x(畝) | 20 | 25 | 30 | 35 |
y(元) | 1800 | 1700 | 1600 | 1500 |
(1)請求出種植櫻桃的面積超過15畝時每畝獲得利潤y與x的函數關系式;
(2)如果小王家計劃承包荒山種植櫻桃,受條件限制種植櫻桃面積x不超過50畝,設小王家種植x畝櫻桃所獲得的總利潤為W元,求小王家承包多少畝荒山獲得的總利潤最大,并求總利潤W(元)的最大值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖, 為坐標原點,點
在
軸的正半軸上,四邊形
是平行四邊形,
,反比例函數
在第一象限內的圖像經過點
,與
交于點
,若點
為
的中點,且
的面積為12,則
的值為( )
A.16B.24C.36D.48
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,在中,
,邊
的長為
邊
的長為
,在此三角形內有一個矩形
;點
分別在
上,設
的長為
,矩形
的面積為
(單位:
)
(1)當等于30時,求
與
的函數關系式:(不要求寫出自變量
的取值范圍)
(2)在(1)的條件下,矩形的面積能否為
?請說明理由?
(3)若與
的函數圖象如圖2所示,求此時
的值
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某超市今年 1 月份的銷售額為 500 萬元,超市預計每個月的銷售額會逐月增加.預測 3 月 份的銷售額比 2 月份增加 120 萬元;
(1)求 2、3 月份平均每月銷售額的增長率;
(2)按照這樣的增長速度,超市想在第一季度完成 1800 萬元的銷售目標是否能實現?說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】我們把一個半圓與拋物線的一部分合成的封閉圖形稱為“蛋圓”,如果一條直線與“蛋圓”只有一個交點,那么這條直線叫做“蛋圓”的切線.如圖所示,點A、B、C、D分別是“蛋圓”與坐標軸的交點,已知點D的坐標為(0,-3),AB為半圓的直徑,半圓圓心M的坐標為(1,0),半圓半徑為2.
(1)請你求出“蛋圓”拋物線部分的解析式,并寫出自變量的取值范圍;
(2)你能求出經過點C的“蛋圓”切線的解析式嗎?試試看;
(3)開動腦筋想一想,相信你能求出經過點D的“蛋圓”切線的解析式.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com