精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在Rt△ABC中,∠ACB=90°,E是BC的中點,以AC為直徑的⊙O與AB邊交于點D,連接DE

(1)求證:△ABC∽△CBD;
(2)求證:直線DE是⊙O的切線.

【答案】
(1)

證明:∵AC為⊙O的直徑,

∴∠ADC=90°,

∴∠BDC=90°,

又∵∠ACB=90°,

∴∠ACB=∠BDC,

又∵∠B=∠B,

∴△BCD∽△BAC;


(2)

證明:連結DO,如圖,

∵∠BDC=90°,E為BC的中點,

∴DE=CE=BE,

∴∠EDC=∠ECD,

又∵OD=OC,

∴∠ODC=∠OCD,

而∠OCD+∠DCE=∠ACB=90°,

∴∠EDC+∠ODC=90°,即∠EDO=90°,

∴DE⊥OD,

∴DE與⊙O相切.


【解析】(1)根據AC為⊙O的直徑,得出△BCD為Rt△,通過已知條件證明△BCD∽△BAC即可;
(2)連結DO,如圖,根據直角三角形斜邊上的中線性質,由∠BDC=90°,E為BC的中點得到DE=CE=BE,則利用等腰三角形的性質得∠EDC=∠ECD,∠ODC=∠OCD,由于∠OCD+∠DCE=∠ACB=90°,所以∠EDC+∠ODC=90°,即∠EDO=90°,于是根據切線的判定定理即可得到DE與⊙O相切.
【考點精析】本題主要考查了切線的判定定理和相似三角形的判定與性質的相關知識點,需要掌握切線的判定方法:經過半徑外端并且垂直于這條半徑的直線是圓的切線;相似三角形的一切對應線段(對應高、對應中線、對應角平分線、外接圓半徑、內切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方才能正確解答此題.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】閱讀理解:如圖①,如果四邊形ABCD滿足AB=AD,CB=CD,∠B=∠D=90°,那么我們把這樣的四邊形叫做“完美箏形”.
將一張如圖①所示的“完美箏形”紙片ABCD先折疊成如圖②所示形狀,再展開得到圖③,其中CE,CF為折痕,∠BCE=∠ECF=∠FCD,點B′為點B的對應點,點D′為點D的對應點,連接EB′,FD′相交于點O.

(1)在平行四邊形、矩形、菱形、正方形四種圖形中,一定為“完美箏形”的是
(2)當圖③中的∠BCD=120°時,∠AEB′=
(3)當圖②中的四邊形AECF為菱形時,對應圖③中的“完美箏形”有  個(包含四邊形ABCD).
(4)拓展提升:當圖③中的∠BCD=90°時,連接AB′,請探求∠AB′E的度數,并說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在邊長均為1的正方形網格紙上有一個△ABC,頂點A、B、C及點O均在格點上,請按要求完成以下操作或運算:

(1)將△ABC向上平移4個單位,得到△A1B1C1(不寫作法,但要標出字母)
(2)將△ABC繞點O旋轉180°,得到△A2B2C2(不寫作法,但要標出字母)
(3)求點A繞著點O旋轉到點A2所經過的路徑長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知直線y=﹣x+3與x軸、y軸分別交于A,B兩點,拋物線y=﹣x2+bx+c經過A,B兩點,點P在線段OA上,從點O出發,向點A以1個單位/秒的速度勻速運動;同時,點Q在線段AB上,從點A出發,向點B以個單位/秒的速度勻速運動,連接PQ,設運動時間為t秒.

(1)求拋物線的解析式;
(2)問:當t為何值時,△APQ為直角三角形;
(3)過點P作PE∥y軸,交AB于點E,過點Q作QF∥y軸,交拋物線于點F,連接EF,當EF∥PQ時,求點F的坐標.
(4)設拋物線頂點為M,連接BP,BM,MQ,問:是否存在t的值,使以B,Q,M為頂點的三角形與以O,B,P為頂點的三角形相似?若存在,請求出t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,P為正方形ABCD的邊BC上一動點(P與B、C不重合),連接AP,過點B作BQ⊥AP交CD于點Q,將△BQC沿BQ所在的直線對折得到△BQC′,延長QC′交BA的延長線于點M.

(1)試探究AP與BQ的數量關系,并證明你的結論
(2)當AB=3,BP=2PC,求QM的長;
(3)當BP=m,PC=n時,求AM的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,△A1B1A2 , △A2B2A3 , △A3B3A4 , …,△AnBnAn+1都是等腰直角三角形,其中點A1、A2、…、An在x軸上,點B1、B2、…、Bn在直線y=x上,已知OA1=1,則OA2015的長為 .

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,四邊形OABC是邊長為4的正方形,點P為OA邊上任意一點(與點O、A不重合),連接CP,過點P作PM⊥CP交AB于點D,且PM=CP,過點M作MN∥OA,交BO于點N,連接ND、BM,設OP=t.

(1)求點M的坐標(用含t的代數式表示);
(2)試判斷線段MN的長度是否隨點P的位置的變化而改變?并說明理由.
(3)當t為何值時,四邊形BNDM的面積最。

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,B(2m,0),C(3m,0)是平面直角坐標系中兩點,其中m為常數,且m>0,E(0,n)為y軸上一動點,以BC為邊在x軸上方作矩形ABCD,使AB=2BC,畫射線OA,把△ADC繞點C逆時針旋轉90°得△A′D′C′,連接ED′,拋物線y=ax2+bx+n(a≠0)過E,A′兩點.

(1)填空:∠AOB= °,用m表示點A′的坐標:A′( , );
(2)當拋物線的頂點為A′,拋物線與線段AB交于點P,且=時,△D′OE與△ABC是否相似?說明理由;
(3)若E與原點O重合,拋物線與射線OA的另一個交點為點M,過M作MN⊥y軸,垂足為N:
①求a,b,m滿足的關系式;
②當m為定值,拋物線與四邊形ABCD有公共點,線段MN的最大值為10,請你探究a的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,點O是△ABC的內心,連接OB,OC,過點O作EF∥BC分別交AB,AC于點E,F.已知△ABC的周長為8,BC=x,△AEF的周長為y,則表示y與x的函數圖象大致是( )

A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视