【題目】如圖,已知點A、C分別在∠GBE的邊BG、BE上,且AB=AC,AD∥BE,∠GBE的平分線與AD交于點D,連接CD.
(1)求證:AB=AD;
(2)求證:CD平分∠ACE.
(3)猜想∠BDC與∠BAC之間有何數量關系?并對你的猜想加以證明.
【答案】(1)證明見解析;(2)證明見解析;(3)∠BDC=∠BAC,證明見解析
【解析】
(1)根據平行線的性質得到∠ADB=∠DBC,由角平分線的定義得到∠ABD=∠DBC,等量代換得到∠ABD=∠ADB,根據等腰三角形的判定即可得到AB=AD;(2)根據平行線的性質得到∠ADC=∠DCE,由①知AB=AD,等量代換得到AC=AD,根據等腰三角形的性質得到∠ACD=∠ADC,求得∠ACD=∠DCE,即可得到結論;
(3)根據角平分線的定義得到∠DBC=∠ABC,∠DCE=
∠ACE,由于∠BDC+∠DBC=∠DCE于是得到∠BDC+
∠ABC=∠ACE,由∠BAC+∠ABC=∠ACE,于是得到∠BDC+
∠ABC=
∠ABC+
∠BAC,即可得到結論.
證明:
(1) AD∥BE
∠2= ∠5
AD平分∠GBE
∠2= ∠1
∠1= ∠5 , AB= AD
(2) AB= AD AB= ACAC= AD
∠3= ∠ADC
又AD∥BE ∠ADC= ∠4
∠3= ∠4
CD平分∠ACE
(3)∠BDC= ∠BAC
證明:BD平分∠ABE
∴∠2= ∠1 = ∠ABC
根據三角形外角性質得:
∠1+ ∠2+ ∠BAC=∠4 +∠3①
①式兩邊除以2得∠BAC=∠4-∠2
而由∠2+ ∠6 =∠4 得出∠6 =∠4 -∠2 即∠BDC=∠4 -∠2
∠BDC=∠BAC
科目:初中數學 來源: 題型:
【題目】如圖,已知△ABC中,AB=AC=6cm,∠B=∠C,BC=4cm,點D為AB的中點.
(1)如果點P在線段BC上以1cm/s的速度由點B向點C運動,同時,點Q在線段CA上由點C向點A運動.當點Q的運動速度為多少時,能夠使△BPD與△CQP全等?
(2)若點Q以1.5cm/s的運動速度從點C出發,點P以原來的運動速度從點B同時出發,都逆時針沿△ABC三邊運動,則經過_____秒后,點P與點Q第一次在△ABC的AC邊上相遇?(在橫線上直接寫出答案,不必書寫解題過程)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,已知正方形ABCD的邊長為5,點E在邊AB上,AE=3,延長DA至點F,使AF=AE,連結EF.將△AEF繞點A順時針旋轉(0°<
<90°),如圖2所示,連結DE、BF.
(1)請直接寫出DE的取值范圍:_______________________;
(2)試探究DE與BF的數量關系和位置關系,并說明理由;
(3)當DE=4時,求四邊形EBCD的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知下列關于的分式方程:
方程1. , 方程2.
, 方程3.
, ……,方程n,
【1】填空:分式方程1的解為 ,分式方程2的解為 ;
【2】解分式方程3;
【3】根據上述方程的規律及解的特點,直接寫出方程n及它的解.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】火車站有某公司待運的甲種貨物1530噸,乙種貨物1150噸,現計劃用50節A,B兩種型號的車廂將這批貨物運至北京,已知每節A型車廂的運費是0.5萬元,每節B型車廂的運費是0.8萬元;甲種貨物35噸和乙種貨物15噸可裝滿一節A型車廂,甲種貨物25噸和乙種貨物35噸可裝滿一節B型車廂,按此要求安排A,B兩種車廂的節數,共有哪幾種方案?請你設計出所有方案,并說明哪種方案的運費最少.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知y是x 的函數,自變量x的取值范圍是x >0,下表是y與x 的幾組對應值.
x | ··· | 1 | 2 | 3 | 5 | 7 | 9 | ··· |
y | ··· | 1.98 | 3.95 | 2.63 | 1.58 | 1.13 | 0.88 | ··· |
小騰根據學習一次函數的經驗,利用上述表格所反映出的y與x之間的變化規律,對該函數的圖象與性質進行了探究.
下面是小騰的探究過程,請補充完整:
(1)如圖,在平面直角坐標系中,描出了以上表中各對對應值為坐標的點.根據描出的點,畫出該函數的圖象;
(2)根據畫出的函數圖象,寫出:
①x=4對應的函數值y約為________;
②該函數的一條性質:__________________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了增強人們的節約用水意識,環節城市用水壓力。某市規定,每月用水18立方米以內(含18立方米)和用水18立方米以上采取兩種不同的收費標準.下圖為該市的用戶每月應交水費y(元)關于用水量x(立方米)的函數圖像.思考并回答下列問題:
(1)求出用水量小于18立方米時,每月應交水費y(元)關于用水量x(立方米)的函數表達式.
(2)若小明家某月交水費81元,則這個月用水量為多少立方米?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com