精英家教網 > 初中數學 > 題目詳情

【題目】如圖,已知點AC分別在∠GBE的邊BG、BE上,且AB=AC,ADBE,∠GBE的平分線與AD交于點D,連接CD

1)求證:AB=AD;

2)求證:CD平分∠ACE

3)猜想∠BDC與∠BAC之間有何數量關系?并對你的猜想加以證明.

【答案】1)證明見解析;(2)證明見解析;(3)∠BDC=BAC,證明見解析

【解析】

1)根據平行線的性質得到∠ADB=DBC,由角平分線的定義得到∠ABD=DBC,等量代換得到∠ABD=ADB,根據等腰三角形的判定即可得到AB=AD;(2)根據平行線的性質得到∠ADC=DCE,由①知AB=AD,等量代換得到AC=AD,根據等腰三角形的性質得到∠ACD=ADC,求得∠ACD=DCE,即可得到結論;
3)根據角平分線的定義得到∠DBC=ABC,∠DCE=ACE,由于∠BDC+DBC=DCE于是得到∠BDC+ABC=ACE,由∠BAC+ABC=ACE,于是得到∠BDC+ABC=ABC+BAC,即可得到結論.

證明:

1 AD∥BE

∠2= ∠5

AD平分∠GBE

∠2= ∠1

∠1= ∠5 , AB= AD

2 AB= AD AB= ACAC= AD

∠3= ∠ADC

AD∥BE ∠ADC= ∠4

∠3= ∠4

CD平分∠ACE

3∠BDC= ∠BAC

證明:BD平分∠ABE

∠2= ∠1 = ∠ABC

根據三角形外角性質得:

∠1+ ∠2+ ∠BAC=∠4 +∠3①

式兩邊除以2∠BAC=∠4-∠2

而由∠2+ ∠6 =∠4 得出∠6 =∠4 -∠2 ∠BDC=∠4 -∠2

∠BDC=∠BAC

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在正方形ABCD中,AC為對角線,點E在AB邊上,EF⊥AC于點F,連接EC,AF=3,△EFC的周長為12,則EC的長為

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知△ABC中,AB=AC=6cm,B=C,BC=4cm,點DAB的中點.

(1)如果點P在線段BC上以1cm/s的速度由點B向點C運動,同時,點Q在線段CA上由點C向點A運動.當點Q的運動速度為多少時,能夠使△BPD與△CQP全等?

(2)若點Q1.5cm/s的運動速度從點C出發,點P以原來的運動速度從點B同時出發,都逆時針沿△ABC三邊運動,則經過_____秒后,點P與點Q第一次在△ABCAC邊上相遇?(在橫線上直接寫出答案,不必書寫解題過程)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,已知正方形ABCD的邊長為5,點E在邊AB上,AE=3,延長DA至點F,使AF=AE,連結EF.將△AEF繞點A順時針旋轉0°<90°),如圖2所示,連結DEBF

1)請直接寫出DE的取值范圍:_______________________;

2)試探究DEBF的數量關系和位置關系,并說明理由;

3)當DE=4時,求四邊形EBCD的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知下列關于的分式方程:

方程1. , 方程2. , 方程3. , ……,方程n,

1】填空:分式方程1的解為 ,分式方程2的解為 ;

2】解分式方程3;

3】根據上述方程的規律及解的特點,直接寫出方程n及它的解.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】火車站有某公司待運的甲種貨物1530,乙種貨物1150,現計劃用50A,B兩種型號的車廂將這批貨物運至北京,已知每節A型車廂的運費是0.5萬元,每節B型車廂的運費是0.8萬元;甲種貨物35噸和乙種貨物15噸可裝滿一節A型車廂,甲種貨物25噸和乙種貨物35噸可裝滿一節B型車廂,按此要求安排A,B兩種車廂的節數,共有哪幾種方案?請你設計出所有方案,并說明哪種方案的運費最少.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知yx 的函數,自變量x的取值范圍是x >0,下表是yx 的幾組對應值.

x

···

1

2

3

5

7

9

···

y

···

1.98

3.95

2.63

1.58

1.13

0.88

···

小騰根據學習一次函數的經驗,利用上述表格所反映出的yx之間的變化規律,對該函數的圖象與性質進行了探究.

下面是小騰的探究過程,請補充完整:

(1)如圖,在平面直角坐標系中,描出了以上表中各對對應值為坐標的點.根據描出的點,畫出該函數的圖象;

(2)根據畫出的函數圖象,寫出:

x=4對應的函數值y約為________;

該函數的一條性質:__________________.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖:請你添加一個條件_____可以得到

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】為了增強人們的節約用水意識,環節城市用水壓力。某市規定,每月用水18立方米以內(含18立方米)和用水18立方米以上采取兩種不同的收費標準.下圖為該市的用戶每月應交水費y(元)關于用水量x(立方米)的函數圖像.思考并回答下列問題:

(1)求出用水量小于18立方米時,每月應交水費y(元)關于用水量x(立方米)的函數表達式.

(2)若小明家某月交水費81元,則這個月用水量為多少立方米?

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视