【題目】x1,x2是方程x2+2x﹣3=0的兩個根,則代數式x12+3x1+x2=_____.
科目:初中數學 來源: 題型:
【題目】如圖, 已知∠ABC=90°,點P為射線BC上任意一點(點P與點B不重合),分別以AB、AP為邊在∠ABC的內部作等邊△ABE和△APQ,連接QE并延長交BP于點F. 試說明:(1)△ABP≌△AEQ;(2)EF=BF
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某廠計劃生產A、B兩種產品共50件.已知A產品每件可獲利潤1200元,B產品每件可獲利潤700元,設生產兩種產品的獲利總額為y (元),生產A產品x (件).
(1)寫出y與x之間的函數關系式;
(2)若生產A、B兩種產品的件數均不少于10件,求總利潤的最大值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,在∠AOB的兩邊上截取AO=BO,OC=OD,連接AD、BC交于點P,連接OP,則下列結論正確的是 ( )
①△APC≌△BPD ②△ADO≌△BCO ③△AOP≌△BOP ④△OCP≌△ODP
A. ②③④ B. ①②③ C. ①②③④ D. ①③④
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知拋物線y=ax2+bx+c(b>a>0)與x軸最多有一個交點,現有以下四個結論:
①該拋物線的對稱軸在y軸左側;
②關于x的方程ax2+bx+c+2=0無實數根;
③a﹣b+c≥0;
④的最小值為3.
其中,正確結論的個數為( )
A.1個 B.2個 C.3個 D.4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC中,∠C=90°,AB=10cm,BC=6cm,若動點P從點C開始,按C→A→B→C的路徑運動,且速度為每秒2 cm/s,設運動的時間為t秒.
(1)出發幾秒后,△BCP是等腰直角三角形?請說明理由。
(2)當t=_____________________時,△BCP為等腰三角形?
(3)另有一點Q,從點C開始,按C→B的路徑運動,且速度為1cm/s,若P、Q兩點同時出發,當P、Q中有一點到達終點時,另一點也停止運動.當t為何值時,直線PQ把△ABC的周長分成的兩部分之間是2倍關系?
(備用圖) (備用圖)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下列說法中錯誤的是( 。
A.任意三角形的內角和都是180°
B.三角形按邊分可分為不等邊三角形和等腰三角形
C.三角形的中線、角平分線、高都是線段
D.三角形的一個外角大于任何一個內角
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一人駕駛快船沿江順流而下,迎面遇到一艘逆流而上的快艇.他問快艇駕駛員:“你后面有輪船開過嗎”快艇駕駛員回答:“半小時前我超過一艘輪船”.快船繼續航行了半小時,遇到了迎面而來的輪船.已知輪船靜水速度是快船靜水速度的2倍,那么快艇靜水速度是快船的靜水速度的____倍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com