【題目】如圖,平行四邊形中,
,過點
作
于點
,現將
沿直線
翻折至
的位置,
與
交于點
.
(1)求證:;
(2)若,
,求
的長.
【答案】(1)見解析;(2)
【解析】
(1)根據平行四邊形的性質得AB∥CD,AB=CD,通過兩角對應相等證明△FCG∽△FBA,利用對應邊成比例列比例式,進行等量代換后化等積式即可;
(2)根據直角三角形30°角所對的直角邊等于斜邊的一半及勾股定理,求出BE的長,再由折疊性質求出BF長,結合(1)的結論代入數據求解.
解(1)∵四邊形ABCD是平行四邊形,
∴AB∥CD,AB=CD,AD=BC
∴∠GCF=∠B, ∠CGF=∠BAF,
∴△FCG∽△FBA,
∴ ,
∴
∴.
(2)∵,
∴∠AEB=90°,
∵∠B=30°, ,
∴AE= ,
由勾股定理得,BE=6,
由折疊可得,BF=2BE=12,
∵AD=BC=8,
∴CF=4
∵,
∴,
∴CG= ,
∴DG=.
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點A、B的坐標分別為,
,點M是AO中點,
的半徑為2.
若
是直角三角形,則點P的坐標為______
直接寫出結果
若
,則BP與
有怎樣的位置關系?為什么?
若點E的坐標為
,那么
上是否存在一點P,使
最小,如果存在,求出這個最小值,如果不存在,簡要說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為紀念“五四運動”100周年,某校舉行了征文比賽,該校學生全部參加了比賽.比賽設置一等、二等、三等三個獎項,賽后該校對學生獲獎情況做了抽樣調查,并將所得數據繪制成如圖所示的兩幅不完整的統計圖.根據圖中信息解答下列問題:
(1)本次抽樣調查學生的人數為 .
(2)補全兩個統計圖,并求出扇形統計圖中A所對應扇形圓心角的度數.
(3)若該校共有840名學生,請根據抽樣調查結果估計獲得三等獎的人數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了掌握八年級數學考試卷的命題質量與難度系數,命題組教師赴外地選取一個水平相當的八年級班級進行預測,將考試成績分布情況進行處理分析,制成頻數分布表如下(成績得分均為整數):
組別 | 成績分組 | 頻數頻率 | 頻數 |
1 | 2 | 0.05 | |
2 | 4 | 0.10 | |
3 | 0.2 | ||
4 | 10 | 0.25 | |
5 | |||
6 | 6 | 0.15 | |
合計 | 40 | 1.00 |
根據表中提供的信息解答下列問題:
(1)頻數分布表中的 ,
,
;
(2)已知全區八年級共有200個班(平均每班40人),用這份試卷檢測,108分及以上為優秀,預計優秀的人數約為 ,72分及以上為及格,預計及格的人數約為 ,及格的百分比約為 ;
(3)補充完整頻數分布直方圖.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖為二次函數y=ax2+bx+c的圖象,在下列說法中①ac>0;②方程ax2+bx+c=0的根是x1=﹣1,x2=3;③a+b+c<0;④當x>1時,y隨x的增大而增大,正確的是( )
A. ①③B. ②④C. ①②④D. ②③④
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,已知拋物線y=x2+bx+c的對稱軸為x=1,且其頂點在直線y=﹣2x﹣2上.
(1)求拋物線的頂點坐標;
(2)求拋物線的解析式;
(3)在給定的平面直角坐標系中畫出這個二次函數的圖象;
(4)當﹣1<x<4時,直接寫出y的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線y=x(x﹣b)﹣與y軸相交于A點,與x軸相交于B、C兩點,且點C在點B的右側,設拋物線的頂點為P.
(1)若點B與點C關于直線x=1對稱,求b的值;
(2)若OB=OA,求△BCP的面積;
(3)當﹣1≤x≤1時,該拋物線上最高點與最低點縱坐標的差為h,求出h與b的關系;若h有最大值或最小值,直接寫出這個最大值或最小值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】平面直角坐標系中有點
和某一函數圖象
,過點
作
軸的垂線,交圖象
于點
,設點
,
的縱坐標分別為
,
.如果
,那么稱點
為圖象
的上位點;如果
,那么稱點
為圖象
的圖上點;如果
,那么稱點
為圖象
的下位點.
(1)已知拋物線.
① 在點A(-1,0),B(0,-2),C(2,3)中,是拋物線的上位點的是 ;
② 如果點是直線
的圖上點,且為拋物線的上位點,求點
的橫坐標
的取值范圍;
(2)將直線在直線
下方的部分沿直線
翻折,直線
的其余部分保持不變,得到一個新的圖象,記作圖象
.⊙
的圓心
在
軸上,半徑為
.如果在圖象
和⊙
上分別存在點
和點F,使得線段EF上同時存在圖象
的上位點,圖上點和下位點,求圓心
的橫坐標
的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com