【題目】函數f(x)= +a(x﹣1)﹣2.
(1)當a=0時,求函數f(x)的極值;
(2)若對任意x∈(0,1)∪(1,+∞),不等式 <
恒成立,求實數a的取值范圍.
【答案】
(1)解:當a=0時,f(x)= ﹣2.x>0,
∴f′(x)=
令f′(x)=0,解得x= ,
當f′(x)>0時,即0<x< ,函數單調遞增,
當f′(x)<0時,即x> ,函數單調遞減,
∴當x= 時,函數f(x)有極大值,極大值為f(
)=e﹣2,無極小值;
(2)解:原不等式等價于 +
>0,即
>0,
∴ [lnx+a(x2﹣1)﹣2(x﹣1)]>0,
令g(x)=lnx+a(x2﹣1)﹣2(x﹣1),g(1)=0,
∴g′(x)= +2ax﹣2=
,
∵ [lnx+a(x2﹣1)﹣2(x﹣1)]>0,
g(2)=ln2+3a﹣2>0a> >0,
①當a≥ 時,2ax2﹣2x+1≥x2﹣2x+1≥(x﹣1)2>0,
∴g′(x)>0,
∴g(x)在(0,+∞)上單調遞增,
∴x∈(0,1),g(x)<0,x∈(1,+∞),g(x)>0,
∴ g(x)>0,
②當0<a< 時,令2ax2﹣2x+1=0,解得x=
>1,
∴x∈(1, )時,g′(x)<0,函數g(x)單調遞減,
∴g(x)<g(1)=0,
∴ g(x)<0,不合題意,舍去,
綜上所述a≥
【解析】(1)先求導,根據導數和函數的極值的關系即可求出,(2)原不等式等價于 +
>0,即
>0,構造函數g(x)=lnx+a(x2﹣1)﹣2(x﹣1),根據導數和函數的最值得關系,分類討論即可證明
【考點精析】本題主要考查了函數的極值與導數的相關知識點,需要掌握求函數的極值的方法是:(1)如果在
附近的左側
,右側
,那么
是極大值(2)如果在
附近的左側
,右側
,那么
是極小值才能正確解答此題.
科目:初中數學 來源: 題型:
【題目】如圖(1),等腰直角三角形ABC的底邊AB=4,點D在線段AC上,DE⊥AB于E,現將△ADE沿DE折起到△PDE的位置(如圖(2)).
(Ⅰ)求證:PB⊥DE;
(Ⅱ)若PE⊥BE,直線PD與平面PBC所成的角為30°,求PE長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,AD∥BC,∠ADC=∠PAB=90°,BC=CD= AD,E為AD的中點,異面直線AP與CD所成的角為90°.
(Ⅰ)證明:△PBE是直角三角形;
(Ⅱ)若二面角P﹣CD﹣A的大小為45°,求二面角A﹣PE﹣C的余弦值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在直角坐標系xOy中,直線l的方程為x﹣y+4=0,曲線C的參數方程 (α為參數) (Ⅰ)已知在極坐標系(與直角坐標系xOy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,點P的極坐標
,判斷點P與直線l的位置關系;
(Ⅱ)設點Q為曲線C上的一個動點,求它到直線l的距離的最小值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知數列{an} 滿足a1= ,a2=
,an+2﹣an+1=(﹣1)n+1(an+1﹣an)(n∈N*),數列{an}的前n項和為Sn , 則S2017= .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】A,B兩種機器人都被用來搬運化工原料,A型機器人比B型機器人每小時多搬運40千克,A型機器人搬運1200千克所用時間與B型機器人搬運800千克所用時間相等.設B型機器人每小時搬運化工原料x千克,根據題意可列方程為( )
A. =
B. =
C. =
D. =
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】若二次函數y=x2+mx的對稱軸是x=3,則關于x的方程x2+mx=7的解為( 。
A.x1=0,x2=6
B.x1=1,x2=7
C.x1=1,x2=﹣7
D.x1=﹣1,x2=7
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,已知平行四邊形ABCD的三個頂點坐標分別是A(m,n),B(2,﹣1),C(﹣m,﹣n),則關于點D的說法正確的是( )
甲:點D在第一象限
乙:點D與點A關于原點對稱
丙:點D的坐標是(﹣2,1)
丁:點D與原點距離是 .
A.甲乙
B.丙丁
C.甲丁
D.乙丙
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,3×3的方格分為上中下三層,第一層有一枚黑色方塊甲,可在方格A、B、C中移動,第二層有兩枚固定不動的黑色方塊,第三層有一枚黑色方塊乙,可在方格D、E、F中移動,甲、乙移入方格后,四枚黑色方塊構成各種拼圖.
(1)若乙固定在E處,移動甲后黑色方塊構成的拼圖是軸對稱圖形的概率是 .
(2)若甲、乙均可在本層移動.
①用樹形圖或列表法求出黑色方塊所構拼圖是軸對稱圖形的概率.
②黑色方塊所構拼圖是中心對稱圖形的概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com