解:(1)證明:延長BD交AC于點E.
∵∠BDC是△CDE的外角,∴∠BDC=∠2+∠CED,
∵∠CED是△ABE的外角,∴∠CED=∠A+∠1.
∴∠BDC=∠A+∠1+∠2.即∠D=∠A+∠ABD+∠ACD.
(2)∵∠D+∠A+∠ABD+∠ACD=∠A+∠ABC+∠ACB+∠D+∠DBC+DCB,
∠A+∠ABC+∠ACB=180°,∠D+∠DBC+∠DCB=180°,
∴∠D+∠A+∠ABD+∠ACD=360°.
(3)證明:令BD、AC交于點E,
∵∠AED是△ABE的外角,
∴∠AED=∠1+∠A,
∵∠AED是△CDE的外角,
∴∠AED=∠D+∠2.
∴∠A+∠1=∠D+∠2即∠D+∠ACD=∠A+∠ABD.
分析:(1)由∠BDC=∠2+∠CED,∠CED=∠A+∠1,可以得出∠D=∠A+∠ABD+∠ACD.
(2)由∠D+∠A+∠ABD+∠ACD=∠A+∠ABC+∠ACB+∠D+∠DBC+DCB,∠A+∠ABC+∠ACB=180°,∠D+∠DBC+DCB=180°,可以得出∠D+∠A+∠ABD+∠ACD=360°.
(3)根據三角形的外角性質定理即三角形的一個外角等于與它不相鄰的兩個內角之和,可知∠AED=∠1+∠A,∠AED=∠D+∠2,所以可知∠A+∠1=∠D+∠2即∠D+∠ACD=∠A+∠ABD.
點評:本題主要考查三角形的外角性質及三角形的內角和定理,解題的關鍵是熟練掌握三角形的外角性質定理即三角形的一個外角等于與它不相鄰的兩個內角之和.