【題目】
已知:如圖,平行四邊形的對角線相交于點
,點
在邊
的延長線上,且
,聯結
.
(1)求證:;
(2)如果,求證:
.
【答案】(1)證明過程見解析;(2)證明過程見解析
【解析】
(1)由平行四邊形的性質得到BO=BD,由等量代換推出OE=
BD,根據平行四邊形的判定即可得到結論;
(2)根據等角的余角相等,得到∠CEO=∠CDE,推出△BDE∽△CDE,即可得到結論.
證明:(1)∵四邊形ABCD是平行四邊形,
∴BO=OD,
∵OE=OB,
∴OE=OD,
∴∠OBE=∠OEB,∠OED=∠ODE,
∵∠OBE+∠OEB+∠OED+∠ODE=180°,
∴∠BEO+∠DEO=∠BED=90°,
∴DE⊥BE;
(2)∵OE⊥CD
∴∠CEO+∠DCE=∠CDE+∠DCE=90°,
∴∠CEO=∠CDE,
∵OB=OE,
∴∠DBE=∠CDE,
∵∠BED=∠BED,
∴△BDE∽△DCE,
∴,
∴BDCE=CDDE.
科目:初中數學 來源: 題型:
【題目】如圖,拋物線與
軸交于
兩點,與
軸交于點
,且
.
(1)求拋物線的解析式.
(2)若點是拋物線上一點,那么在拋物線的對稱軸上,是否存在一點
,使得
的周長最?若存在,請求出點
的坐標:若不存在,請說明理由.注:二次函數
的對稱軸是直線
.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】圖1是某小區入口實景圖,圖2是該入口抽象成的平面示意圖.已知入口BC寬3.9米,門衛室外墻AB上的O點處裝有一盞路燈,點O與地面BC的距離為3.3米,燈臂OM長為1.2米(燈罩長度忽略不計),∠AOM=60°.
(1)求點M到地面的距離;
(2)某搬家公司一輛總寬2.55米,總高3.5米的貨車從該入口進入時,貨車需與護欄CD保持0.65米的安全距離,此時,貨車能否安全通過?若能,請通過計算說明;若不能,請說明理由.(參考數據:1.73,結果精確到0.01米)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】二次函數y=ax2+bx+c(a≠0)的圖象如圖所示,根據圖象解答下列問題.
(1)寫出方程ax2+bx+c=0的兩個根;
(2)寫出不等式ax2+bx+c>0的解集;
(3)寫出y隨x的增大而減小的自變量x的取值范圍;
(4)若方程ax2+bx+c=k有兩個不相等的實數根,求k的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某市射擊隊打算從君君、標標兩名運動員中選拔一人參加省射擊比賽,射擊隊對兩人的射擊技能進行了測評.在相同的條件下,兩人各打靶5次,成績統計如下:
(1)填寫下表:
平均數(環) | 中位數(環) | 方差(環2) | |
君君 |
| 8 | 0.4 |
標標 | 8 |
|
|
(2)根據以上信息,若選派一名隊員參賽,你認為應選哪名隊員,并說明理由.
(3)如果標標再射擊1次,命中8環,那么他射擊成績的方差會 .(填“變大”“變小”或“不變”)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(本小題滿分10分)某市政府大力扶持大學生創業.李明在政府的扶持下投資銷售一種進價為每件20元的護眼臺燈.銷售過程中發現,每月銷售量y(件)與銷售單價x(元)之間的關系可近似的看作一次函數:.
(1)設李明每月獲得利潤為w(元),當銷售單價定為多少元時,每月可獲得最大利潤?
(2)如果李明想要每月獲得2000元的利潤,那么銷售單價應定為多少元?
(3)根據物價部門規定,這種護眼臺燈的銷售單價不得高于32元,如果李明想要每月獲得的利潤不低于2000元,那么他每月的成本最少需要多少元?
(成本=進價×銷售量)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在全民讀書月活動中,某校隨機調查了部分同學,本學期計劃購買課外書的費用情況,并將結果繪制成如圖所示的統計圖.根據相關信息,解答下列問題.
(1)這次調查獲取的樣本容量是 .(直接寫出結果)
(2)這次調查獲取的樣本數據的眾數是 ,中位數是 .(直接寫出結果)
(3)若該校共有1000名學生,根據樣本數據,估計該校本學期計劃購買課外書的總花費.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com