【題目】如圖1,在平面直角坐標系中A(a,0),B(0,b),且a,b滿足.
(1) (2)
(1)A、B坐標分別為A( ) 、B( ).
(2)P為x軸上一點,C為AB中點,∠APC=∠PBO,求AP的長.
(3)如圖2,點E為第一象限一點,AE=AB,以AE為斜邊構造等腰直角△AFE,連BE,連接OF并延長交BE于點G,求證:BG=EG.
【答案】(1)A(4,0),B(0,4);(2)6;(3)見解析.
【解析】
(1)根據解出a,b的值,即可求出A,B的坐標;
(2)作CH⊥AP于點H,由△AOB為等腰直角三角形,可證明∠PBC=∠PCB,從而證明△PBO≌△CPH,即可求出AP長;
(3)連接AG,根據題意證明△AOB≌△AFE,再根據角度轉換得到∠BGO,∠AGO的度數,即可證明∠AGB=90°,即可證明BG=EG.
(1)由得:a=b=4,
則點A坐標為(4,0),點B坐標為(0,4);
(2)作CH⊥AP于點H,
由(1)知△AOB為等腰直角三角形,
∴∠OBA=∠OAB=45°,
∵∠APC=∠PBO,
∴∠PCB=∠APC+∠CAP,∠PBC=∠PBO+∠OBA,
∴∠PBC=∠PCB,
∴PB=PC,
在△PBO和△CPH中
∴△PBO≌△CPH(AAS),
∵C為AB中點,
∴CH=2,
∴PO=CH=2,
∴AP=OA+OP=4+2=6;
(3)連接AG,
∵△AFE為等腰直角三角形,AE=AB,
在△AOB和△AFE中
∴△AOB≌△AFE(ASA),
∴∠OAF=∠BAE,
∴∠FOA=∠EBA,
∴∠BGO=∠OAB=45°,
∴∠BOF=∠BAG,
∴∠AGO=∠OBA=45°,
∴∠BGA=90°,
∵△ABE為等腰三角形,
根據等腰三角形的三線合一知G為BE中點,
∴BG=EG.
科目:初中數學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,AC與BD相交于點O,∠AOB=60°,BD=4,將△ABC沿直線AC翻折后,點B落在點E處,那么S△AED=______
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一座橋如圖,橋下水面寬度AB是20米,高CD是4米.要使高為3米的船通過,則其寬度須不超過多少米.
(1)如圖1,若把橋看做是拋物線的一部分,建立如圖坐標系.
①求拋物線的解析式;
②要使高為3米的船通過,則其寬度須不超過多少米?
(2)如圖2,若把橋看做是圓的一部分.
①求圓的半徑;
②要使高為3米的船通過,則其寬度須不超過多少米?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某區環保部門為了提高宣傳垃圾分類的實效,抽樣調查了部分居民小區一段時間內生活垃圾的分類情況,進行整理后,繪制了如下兩幅不完整的統計圖:
根據統計圖解答下列問題:
(1)求抽樣調查的生活垃圾的總噸數;
(2)求扇形統計圖中,“D”部分所對應的圓心角的度數,并將條形統計圖補充完整;
(3)調查發現,在可回收物中廢紙垃圾約占,每回收 1 噸廢紙可再造 0.85 噸的再生紙,假設該城市每月生產的生活垃圾為10000 噸,且全部分類處理,那么每月回收的廢紙可制成再生紙多少噸?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】根據全等多邊形的定義,我們把四個角,四條邊分別相等的兩個凸四邊形叫做全等四邊形,記作:四邊形ABCD≌四邊形A1B1C1D1
(1)若四邊形ABCD≌四邊形A1B1C1D1,已知AB3,BC4,ADCD5,B90,D 60,則A1D1 ,B1 , A1C1 (直接寫出答案);
(2)如圖 1,四邊形 ABEF≌四邊形CBED,連接AD交 BE于點O,連接F,求證:AOBFOE;
(3)如圖 2,若ABA1B1,BCB1C1,CDC1D1,ADA1D1,BB1,求證:四邊形ABCD≌四邊形A1B1C1D1
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某工廠為了擴大生產,決定購買6臺機器用于生產零件,現有甲、乙兩種機器可供選擇,其中甲型機器每日生產零件106個,乙型機器每日生產零件60個,經調查,購買3臺甲型機器和2臺乙機器共需31萬元,購買一臺甲型機器比購買一臺乙型機器多2萬元.
(1)求甲、乙兩種機器每臺各多少萬元?
(2)如果工廠購買機器的預算資金不超過34萬元,那么該工廠有幾種購買方案?
(3)在(2)的條件下,如果該工廠購進的6臺機器的日產量能力不能低于380個,那么為了節約資金,應選擇那種方案?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一次函數y=﹣x+5的圖象與反比例函數(k≠0)在第一象限的圖象交于A(1,n)和B兩點.
(1)求反比例函數的解析式及點B坐標;
(2)在第一象限內,當一次函數y=-x+5的值大于反比例函數(k≠0)的值時,寫出自變量x的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,小麗想知道自家門前小河的寬度,于是她按以下辦法測出了如下數據:小麗在河岸邊選取點A,在點A的對岸選取一個參照點C,測得∠CAD=30°;小麗沿岸向前走30m選取點B,并測得∠CBD=60°.請根據以上數據,用你所學的數學知識,幫小麗計算小河的寬度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,O為原點,點A(﹣2,0),點B(0,2),點E,點F分別為OA,OB的中點.若正方形OEDF繞點O順時針旋轉,得正方形OE′D′F′,記旋轉角為α.
(1)如圖①,當α=90°時,求AE′,BF′的長;
(2)如圖②,當α=135°時,求證AE′=BF′,且AE′⊥BF′;
(3)若直線AE′與直線BF′相交于點P,求點P的縱坐標的最大值(直接寫出結果即可).
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com