【題目】如圖,△ABC各頂點的坐標分別是A(﹣2,﹣4),B(0,﹣4),C(1,﹣1).
(1)在圖中畫出△ABC關于原點對稱的△AB1C1;
(2)在圖中畫出△ABC繞原點C逆時針旋轉90°后的△A2B2C2;
(3)在(2)的條件下,AC邊掃過的面積是 .
【答案】
(1)解:如圖,△A1B1C1為所作
(2)解:如圖,△A2B2C2為所作
(3) π
【解析】解:(3)OC= ,OA=
=2
, AC邊掃過的面積=S扇形OAA2﹣S扇形OCC2=
﹣
=
π.
所以答案是 π.(1)利用關于原點對稱的點的坐標特征寫出點A1、B1、C1的坐標,然后描點即可得到△A1B1C1;(2)根據網格特點和旋轉的性質畫出A、B、C對稱點A2、B2、C2 , 從而得到△A3B3C3;(3)根據扇形的面積公式,利用AC邊掃過的面積=S扇形OAA2﹣S扇形OCC2進行計算即可.
【考點精析】解答此題的關鍵在于理解扇形面積計算公式的相關知識,掌握在圓上,由兩條半徑和一段弧圍成的圖形叫做扇形;扇形面積S=π(R2-r2).
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c交x軸于點A(﹣3,0)和點B,交y軸于點C(0,3).
(1)求拋物線的函數表達式;
(2)若點P在拋物線上,且S△AOP=4SBOC , 求點P的坐標;
(3)如圖b,設點Q是線段AC上的一動點,作DQ⊥x軸,交拋物線于點D,求線段DQ長度的最大值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】設四棱錐P﹣ABCD的底面不是平行四邊形,用平面 α去截此四棱錐,使得截面四邊形是平行四邊形,則這樣的平面α( )
A.不存在
B.只有1個
C.恰有4個
D.有無數多個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校九年級數學模擬測試中,六名學生的數學成績如下(單位:分):110,106,109,111,108,110,下列關于這組數據描述正確的是( )
A.眾數是110
B.方差是16
C.平均數是109.5
D.極差是6
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AB=9,cosB= ,把△ABC繞著點C旋轉,使點B與AB邊上的點D重合,點A落在點E,則點A,E之間的距離為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AC=3,BC=2,邊AB的垂直平分線交AC邊于點D,交AB邊于點E,聯結DB,那么tan∠DBC的值是 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】問題背景:數學活動課上老師出示問題,如圖1,有邊長為a的正方形紙片一張,三邊長分別為a、b、c的全等直角三角形紙片兩張,且b .請你用這三張紙片拼出一個圖案,并將這個圖案的某部分進行旋轉或平移變換之后,提出一個問題(可以添加其他條件,例如可以給出a、b的值等等).
解決問題:
下面是兩個學習小組拼出圖案后提出的問題,請你解決他們提出的問題.
(1)“愛心”小組提出的問題是:如圖2,將△DFC繞點F逆時針旋轉,使點D恰好落在AD邊上的點D′處,猜想此時四邊形AEFD′是什么特殊四邊形,并加以證明;
(2)“希望”小組提出的問題是:如圖3,點M為BE中點,將△DCF向左平移至DF恰好過點M時停止,且補充條件a=6,b=2,求△DCF平移的距離.
自主創新:
(3)請你仿照上述小組的同學,在下面圖4的空白處用實線畫出你拼出的圖案,用虛線畫出變換圖,并在橫線處寫出你提出的問題.(不必解答)
你提出的問題: .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com