【題目】如圖,已知∠ABC=∠BAD,添加下列條件還不能判定△ABC≌△BAD的是( )
A.AC=BD
B.∠CAB=∠DBA
C.∠C=∠D
D.BC=AD
【答案】A
【解析】解:由題意,得∠ABC=∠BAD,AB=BA,
A、∠ABC=∠BAD,AB=BA,AC=BD,(SSA)三角形不全等,故A錯誤;
B、在△ABC與△BAD中, ,△ABC≌△BAD(ASA),故B正確;
C、在△ABC與△BAD中, ,△ABC≌△BAD(AAS),故C正確;D、在△ABC與△BAD中,
,△ABC≌△BAD(SAS),故D正確;
故選:A.
根據全等三角形的判定:SAS,AAS,ASA,可得答案.本題考查了全等三角形的判定,判定兩個三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定兩個三角形全等,判定兩個三角形全等時,必須有邊的參與,若有兩邊一角對應相等時,角必須是兩邊的夾角.
科目:初中數學 來源: 題型:
【題目】九年級(3)班數學興趣小組經過市場調查整理出某種商品在第x天(1≤x≤90,且x為整數)的售價與銷售量的相關信息如下.已知商品的進價為30元/件,設該商品的售價為y(單位:元/件),每天的銷售量為p(單位:件),每天的銷售利潤為w(單位:元).
時間x(天) | 1 | 30 | 60 | 90 |
每天銷售量p(件) | 198 | 140 | 80 | 20 |
(1)求出w與x的函數關系式;
(2)問銷售該商品第幾天時,當天的銷售利潤最大?并求出最大利潤;
(3)該商品在銷售過程中,共有多少天每天的銷售利潤不低于5600元?請直接寫出結果.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在五邊形ABCDE中,AB=AC=AD=AE,且AB∥ED,∠EAB=120°,則∠DCB=( )
A.150°
B.160°
C.130°
D.60°
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,在正方形ABCD內作∠EAF=45°,AE交BC于點E,AF交CD于點F,連接EF,過點A作AH⊥EF,垂足為H.
(1)如圖2,將△ADF繞點A順時針旋轉90°得到△ABG.
①求證:△AGE≌△AFE;
②若BE=2,DF=3,求AH的長.
(2)如圖3,連接BD交AE于點M,交AF于點N.請探究并猜想:線段BM,MN,ND之間有什么數量關系?并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如果將四根木條首尾相連,在相連處用螺釘連接,就能構成一個平面圖形.
(1)若固定三根木條AB,BC,AD不動,AB=AD=2cm,BC=5cm,如圖,量得第四根木條CD=5cm,判斷此時∠B與∠D是否相等,并說明理由.
(2)若固定一根木條AB不動,AB=2cm,量得木條CD=5cm,如果木條AD,BC的長度不變,當點D移到BA的延長線上時,點C也在BA的延長線上;當點C移到AB的延長線上時,點A、C、D能構成周長為30cm的三角形,求出木條AD,BC的長度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC中,D為AB上一點,E為BC上一點,且AC=CD=BD=BE,∠A=50°,則∠CDE的度數為( 。
A.50°
B.51°
C.51.5°
D.52.5°
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】我們在學完“平移、軸對稱、旋轉”三種圖形的變化后,可以進行進一步研究,請根據示例圖形,完成下表.
圖形的變化 | 示例圖形 | 與對應線段有關的結論 | 與對應點有關的結論 |
平移 | AA′=BB′ | ||
軸對稱 | |||
旋轉 | AB=A′B′;對應線段AB和A′B′所在的直線相交所成的角與旋轉角相等或互補. |
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知點A、B、C、D均在以BC為直徑的圓上,AD∥BC,AC平分∠BCD,∠ADC=120°,四邊形ABCD的周長為10,則圖中陰影部分的面積為 .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com