【題目】現有一個如圖所示的標有2、3、4、5、6的轉盤,另有五張分別標有1、2、3、4、5的撲克,小華和小亮用它們做游戲,先由小華轉動轉盤一次,記下指針停留時所指的數字;再由小亮隨機抽取背面朝上的撲克一張,記下正面的數字.
(1)用列表法或畫樹狀圖的方法,求出記下的兩個數字之和為8的概率.
(2)若記下的兩個數字之和為奇數,則小華得1分;若記下的兩個數字之和為偶數,則小亮得1分.這個游戲對雙方公平嗎?為什么?
科目:初中數學 來源: 題型:
【題目】如圖①,已知拋物線y=ax2+bx+c的圖像經過點A(0,3)、B(1,0),其對稱軸為直線l:x=2,過點A作AC∥x軸交拋物線于點C,∠AOB的平分線交線段AC于點E,點P是拋物線上的一個動點,設其橫坐標為m.
(1)求拋物線的解析式;
(2)若動點P在直線OE下方的拋物線上,連結PE、PO,當m為何值時,四邊形AOPE面積最大,并求出其最大值;
(3)如圖②,F是拋物線的對稱軸l上的一點,在拋物線上是否存在點P使△POF成為以點P為直角頂點的等腰直角三角形?若存在,直接寫出所有符合條件的點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,以AC為直徑作⊙O,交AB于D,過點O作OE∥AB,交BC于E.
(1)求證:ED為⊙O的切線;
(2)如果⊙O的半徑為,ED=2,延長EO交⊙O于F,連接DF、AF,求△ADF的面積.
【答案】(1)證明見解析;(2)
【解析】試題分析:(1)首先連接OD,由OE∥AB,根據平行線與等腰三角形的性質,易證得≌
即可得
,則可證得
為
的切線;
(2)連接CD,根據直徑所對的圓周角是直角,即可得 利用勾股定理即可求得
的長,又由OE∥AB,證得
根據相似三角形的對應邊成比例,即可求得
的長,然后利用三角函數的知識,求得
與
的長,然后利用S△ADF=S梯形ABEF-S梯形DBEF求得答案.
試題解析:(1)證明:連接OD,
∵OE∥AB,
∴∠COE=∠CAD,∠EOD=∠ODA,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠COE=∠DOE,
在△COE和△DOE中,
∴△COE≌△DOE(SAS),
∴ED⊥OD,
∴ED是的切線;
(2)連接CD,交OE于M,
在Rt△ODE中,
∵OD=32,DE=2,
∵OE∥AB,
∴△COE∽△CAB,
∴AB=5,
∵AC是直徑,
∵EF∥AB,
∴S△ADF=S梯形ABEFS梯形DBEF
∴△ADF的面積為
【題型】解答題
【結束】
25
【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個公共點M(1,0),且a<b.
(1)求b與a的關系式和拋物線的頂點D坐標(用a的代數式表示);
(2)直線與拋物線的另外一個交點記為N,求△DMN的面積與a的關系式;
(3)a=﹣1時,直線y=﹣2x與拋物線在第二象限交于點G,點G、H關于原點對稱,現將線段GH沿y軸向上平移t個單位(t>0),若線段GH與拋物線有兩個不同的公共點,試求t的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】有這樣一個問題:探究函數的圖象與性質.小彤根據學習函數的經驗,對函數
的圖象與性質進行了探究.下面是小彤探究的過程,請補充完整:
x | -4 | -3.5 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 3.5 | 4 | ||
y |
| 0 |
|
| m |
|
|
(1)求m的值為 ;
(2)如圖,在平面直角坐標系x0y 中,描出了以上表中各對對應值為坐標的點,根據描出的點,畫出了圖象的一部分,請根據剩余的點補全此函數的圖象;
(3)方程實數根的個數為 ;
(4)觀察圖象,寫出該函數的一條性質 ;
(5)在第(2)問的平面直角坐標系中畫出直線,根據圖象寫出方程
的一個正數根約為 (精確到0.1).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知以Rt△ABC的邊AB為直徑作△ABC的外接圓⊙O,∠B的平分線BE交AC于D,交⊙O于E,過E作EF∥AC交BA的延長線于F.
(1)求證:EF是⊙O切線;
(2)若AB=15,EF=10,求AE的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,二次函數y=﹣x2+bx+c的圖象經過點A(4,0),B(﹣4,﹣4),且與y軸交于點C.
(1)求此二次函數的解析式;
(2)證明:AO平分∠BAC;
(3)在二次函數對稱軸上是否存在一點P使得AP=BP?若存在,請求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某水果零售商店,通過對市場行情的調查,了解到兩種水果銷路比較好,一種是冰糖橙,一種是睡美人西瓜.通過兩次訂貨購進情況分析發現,買40箱冰糖橙和15箱睡美人西瓜花去2000元,買20箱冰糖橙和30箱睡美人西瓜花去1900元.
(1)請求出購進這兩種水果每箱的價格是多少元?
(2)該水果零售商在五一期間共購進了這兩種水果200箱,冰糖橙每箱以40元價格出售,西瓜以每箱50元的價格出售,獲得的利潤為w元.設購進的冰糖橙箱數為a箱,求w關于a的函數關系式;
(3)在條件(2)的銷售情況下,但是每種水果進貨箱數不少于30箱,西瓜的箱數不少于冰糖橙箱數的5倍,請你設計進貨方案,并計算出該水果零售商店能獲得的最大利潤是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知A、F、C、D四點在同一條直線上,AF=CD,AB∥DE,且AB=DE.
(1)求證:△ABC≌△DEF;
(2)若EF=3,DE=4,∠DEF=90°,請直接寫出使四邊形EFBC為菱形時AF的長度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖, 甲乙兩城市相距千米,一輛貨車和一輛客車均從甲城市出發勻速行駛至乙城市,已知貨車出發
小時后客車再出發,先到終點的車輛原地休息,在汽車行駛過程中,設兩車之間的距離為
(千米),客車出發的時間為
(小時),它們之間的關系如圖所示,則下列結論:
①貨車的速度是千米/小時;②離開出發地后,兩車第一次相遇時,距離出發地
千米;③貨車從出發地到終點共用時
小時;④客車到達終點時,兩車相距
千米.正確的有( 。
A. B.
C.
D.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com