【題目】如圖,以Rt△ABC的直角邊AB為直徑作⊙O,交斜邊AC于點D,點E為OB的中點,連接CE并延長交⊙O于點F,點F恰好落在 的中點,連接AF并延長與CB的延長線相交于點G,連接OF.
(1)求證:OF= BG;
(2)若AB=4,求DC的長.
【答案】
(1)證明:∵以Rt△ABC的直角邊AB為直徑作⊙O,點F恰好落在 的中點,
∴ =
,
∴∠AOF=∠BOF,
∵∠ABC=∠ABG=90°,
∴∠AOF=∠ABG,
∴FO∥BG,
∵AO=BO,
∴FO是△ABG的中位線,
∴FO= BG
(2)解:在△FOE和△CBE中,
,
∴△FOE≌△CBE(ASA),
∴BC=FO= AB=2,
∴AC= =2
,
連接DB,
∵AB為⊙O直徑,
∴∠ADB=90°,
∴∠ADB=∠ABC,
∵∠BCD=∠ACB,
∴△BCD∽△ACB,
∴ =
,
∴ =
,
解得:DC= .
【解析】(1)直接利用圓周角定理結合平行線的判定方法得出FO是△ABG的中位線,即可得出答案;(2)首先得出△FOE≌△CBE(ASA),則BC=FO= AB=2,進而得出AC的長,再利用相似三角形的判定與性質得出DC的長.
科目:初中數學 來源: 題型:
【題目】我市開展“美麗自宮,創衛同行”活動,某校倡議學生利用雙休日在“花!眳⒓恿x務勞動,為了解同學們勞動情況,學校隨機調查了部分同學的勞動時間,并用得到的數據繪制了不完整的統計圖,根據圖中信息回答下列問題:
(1)將條形統計圖補充完整;
(2)扇形圖中的“1.5小時”部分圓心角是多少度?
(3)求抽查的學生勞動時間的眾數、中位數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,在Rt△ABC中,∠ACB=90°,點D在邊AC上,點E是BD的中點,CE的延長線交邊AB于點F,且∠CED=∠A.
(1)求證:AC=AF;
(2)在邊AB的下方畫∠GBA=∠CED,交CF的延長線于點G,聯結DG,在圖中畫出圖形,并證明四邊形CDGB是矩形.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線AB,CD相交于點O,射線OM平分∠AOC,ON⊥OM.
(1)若∠BOD=70°,求∠AOM和∠CON的度數;
(2)若∠BON=50°,求∠AOM和∠CON的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】列方程解應用題:
甲組的5名工人9月份完成的總工作量比此月人均定額的4倍多30件,乙組的6名工人9月份完成的總工作量比此月人均定額的6倍少30件
(1)如果兩組工人實際完成的此月人均工作量相等,那么此月人均定額是多少?
(2)如果甲組工人實際完成的此月人均工作量比乙組的多3件,則此月人均定額是多少?
(3)如果甲組工人實際完成的此月人均工作量比乙組的少3件,則此月人均定額是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=ax-2ax-3a(a<0)與x軸交于A、B兩點(A在B的左側),與y軸交于點C,拋物線的對稱軸與拋物線交于點P,與直線BC交于點M,且PM= AB.
(1)求拋物線的解析式;
(2)點K是x軸正半軸上一點,點A、P關于點K的對稱點分別為 、
,連接
、
,若
,求點K的坐標;
(3)矩形ADEF的邊AF在x軸負半軸上,邊AD在第二象限,AD=2,DE=3.將矩形ADEF沿x軸正方向平移t(t>0)個單位,直線AD、EF分別交拋物線于G、H.問:是否存在實數t,使得以點D、F、G、H為頂點的四邊形是平行四邊形?若存在,求出t的值;若不存在,說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,等腰△ABC的底邊長為8cm,腰長為5cm,一動點P在底邊上從B向C以0.25cm/s的速度移動,請你探究:當P運動幾秒時,P點與頂點A的連線PA與腰垂直。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在一條筆直的公路上有A、B兩地,甲騎自行車從A地到B地;乙騎摩托車從B地到A地,到達A地后立即按原路返回.如圖是甲、乙兩人離B地的距離y(km)與行駛時間x(h)之間的函數圖象,根據圖象解答以下問題:
(1)直接寫出y甲,y乙與x之間的函數關系式(不寫過程);
(2)①求出點M的坐標,并解釋該點坐標所表示的實際意義;
②根據圖象判斷,x取何值時,y乙>y甲.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com