精英家教網 > 初中數學 > 題目詳情
10、如圖,等腰梯形ABCD中,AD∥BC,AC⊥BD,且∠ABD=15°,則∠ADC=
120
度.
分析:根據條件可以得到△BOC是等腰直角三角形,則∠ACB=45°,∠ACD=∠ABD=15°,即可求得∠DCB的度數,根據平行線的性質,即可求得∠ADC的度數.
解答:解:∵等腰梯形ABCD中,AD∥BC,AC⊥BD
∴△BOC是等腰直角三角形.
∴∠ACB=45°,∠ACD=∠ABD=15°
∴∠DCB=∠ACD+∠ACB=15°+45°=60°.
∵AD∥BC
∴∠ADC+∠DCB=180°
∴∠ADB=180°-∠DCB=180°-60°=120°
故答案是;120.
點評:本題主要考查等腰直角三角形的性質,以及平行線的性質,正確理解△OBC是等腰直角三角形是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

14、如圖,等腰梯形ABCD中,AB∥CD,∠A=60°,BD平分∠ABC,若梯形ABCD的周長為40cm,則CD的長為( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

24、已知:如圖,等腰梯形ABCD中,AD∥BC,BD平分∠ABC.
(1)求證:AB=AD;
(2)若AD=2,∠C=60°,求等腰梯形ABCD的周長.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2007•昌平區二模)已知:如圖,等腰梯形ABCD中,AD∥BC,BD平分∠ABC,∠A=120°,BD=4
3

(1)求證:AB=AD;
(2)求△BCD的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,等腰梯形ABCD中,AD∥BC,AB=CD,對角線BD平分∠ABC,且BD⊥DC,上底AD=3cm.
(1)求∠ABC的度數; 
(2)求梯形ABCD的周長.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,等腰梯形ABCD中,AD∥BC,AB=CD,BD平分∠ABC,BD⊥DC,延長BC到E,使CE=AD.
(1)求證:BD=DE;
(2)當DC=2時,求梯形面積.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视