精英家教網 > 初中數學 > 題目詳情
任何一個正整數n都可以進行這樣的分解:n=s×t(s、t是正整數,且s≤t),如果p×q在n的所有這種分解中兩因數之差的絕對值最小,我們就稱p×q(p≤q)是n的最佳分解,并規定F(n)=
p
q
.例如:18可以分解成1×18,2×9,3×6,這時就有F(18)=
3
6
=
1
2
.結合以上信息,給出下列關于F(n)的說法:①F(2)=
1
2
;②F(24)=
3
8
;③F(27)=
1
3
;④若n是一個整數的平方,則F(n)=1.其中正確的說法有
①③④
①③④
.(只填序號)
分析:把2,24,27,n分解為兩個正整數的積的形式,找到相差最少的兩個數,讓較小的數除以較大的數,看結果是否與所給結果相同.
解答:解:(1)2可以分解成1×2,所以 F(2)=
1
2
;故正確.
(2)24可以分解成1×24,2×12,3×8,4×6這四種,所以 F(24)=
4
6
=
2
3
;故(2)錯誤.
(3)27可以分解成1×27,3×9這兩種,所以 F(27)=
3
9
=
1
3
;故正確.
(4)若n是一個整數的平方,則F(n)=兩個相同的整數相除=1,故(4)正確.
所以正確的說法是①;③;④.
點評:本題考查題目信息獲取能力,解決本題的關鍵是理解此題的定義:所有這種分解中兩因數之差的絕對值最小,F(n)=
p
q
(p≤q).
練習冊系列答案
相關習題

科目:初中數學 來源:湖南省競賽題 題型:單選題

任何一個正整數都可以寫成兩個正整數相乘的形式,對于兩個乘數的差的絕對值最小的一種分解:n=p×q(p≤q)可稱為正整數n的最佳分解,并規定F(n)=。如:12=1×12=2×6=3×4,則F(12)=,則在以下結論: ①F(2)=, ②F(24)= ,③若n是一個完全平方數,則F(n)=1,④若n是一個完全立方數,即n=a3(a是正整數),則F(n)=。中,正確的結論有:

[     ]

A.4個
B.3個
C.2個
D.1個

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视