精英家教網 > 初中數學 > 題目詳情
精英家教網如圖,在△ABC中,AE=EB,AF=FC,有一同學發現EF與BC存在以下關系:EF∥BC,且EF=
12
BC.
(1)請你用學過的知識來說明上述關系成立的理由.
(2)如圖:在(1)的結論下,過BC、EF作直線,過A作BC的平行線.將AC向左平移到DC,得到圖②,將AC向右平移到DC,得到圖③.在圖②和圖③中猜想線段EF與線段AD、BC的關系,請把你猜想的結論填在圖下的方框內,并說明理由.
精英家教網
精英家教網
分析:(1)延長EF到點D,使FD=EF,然后利用邊角邊定理證明△AEF與△CDF全等,根據全等三角形對應邊相等可得AE=DC,對應角相等可得∠D=∠AEF,再根據內錯角相等兩直線平行可得CD∥AB,從而證明四邊形BCDE是平行四邊形,根據平行四邊形的對邊相等即可得證;
(2)圖②中,根據(1)的結論可得EG∥BH且EG=
1
2
BH,再根據平移可知四邊形ADCH是平行四邊形,且FG∥BC,從而得到FG=
1
2
(AD+CH),最后根據EF=EG-FG整理即可得解;
圖③中,同理可得EF=EG+FG,然后整理即可得解.
解答:精英家教網解:(1)理由如下:延長EF到點D,使FD=EF,
在△AEF與△CDF中,
AF=FC
∠AFE=∠DFC
EF=FD
(對頂角相等)
,
∴△AEF≌△CDF(SAS),
∴AE=DC,∠D=∠AEF,
∴CD∥AB,
∵AE=EB,
∴DE=EB,
∴四邊形BCDE是平行四邊形,
∴ED∥BC,且ED=BC,
∴EF∥BC,且EF=
1
2
BC;

(2)如圖②所示,根據(1)得,EG∥BC,且EG=
1
2
BH,
根據題意得,AD∥BC,CD∥AH,
∴四邊形ADCH是平行四邊形,
∵EG∥BC,
∴FG=
1
2
(AD+CH),
∴EF=EG-FG=
1
2
BH-
1
2
(AD+CH)=
1
2
(BH-CH)-
1
2
AD=
1
2
(BC-AD);
如圖③所示,根據(1)得,EG∥BC,且EG=
1
2
BH,精英家教網
根據題意得,AD∥BC,CD∥AH,
∴四邊形ADCH是平行四邊形,
∵EG∥BC,
∴FG=
1
2
(AD+CH),
∴EF=EG+FG=
1
2
BH+
1
2
(AD+CH)=
1
2
(BH+CH)+
1
2
AD=
1
2
(BC+AD).
點評:本題考查了三角形中位線的證明,以及三角形中位線定理的拓廣,作出輔助線找出中位線EF的2倍長度,構造出平行四邊形并進行證明四邊形BCDE是平行四邊形是解決本題的關鍵.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現將△ABC繞點A逆時針旋轉30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點,向斜邊作垂線,畫出一個新的等腰三角形,如此繼續下去,直到所畫出的直角三角形的斜邊與△ABC的BC重疊,這時這個三角形的斜邊為
( 。
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數學 來源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是(  )

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數學 來源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點E、D,若BC=10,AC=6cm,則△ACE的周長是
16
cm.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视