【題目】如圖,,
平分
,過點
作
交
于
,連接
交
于
,若
,
,求
,
的長.
【答案】BD=,DN=
【解析】
由平行線的性質可證∠MBD=∠BDC,即可證AM=MD=MB=4,由BD2=ADCD可得BD長,再由勾股定理可求MC的長,通過證明△MNB∽△CND,可得,即可求DN的長.
解:∵BM∥CD
∴∠MBD=∠BDC
∴∠ADB=∠MBD,且∠ABD=90°
∴BM=MD,∠MAB=∠MBA
∴BM=MD=AM=4
∵平分
,
∴∠ADB=∠CDB,
∵,
∴△ABD∽△BCD,
∴BD2=ADCD,
∵ CD=6,AD=8,
∴BD2=48,
即BD=,
∴BC2=BD2-CD2=12
∴MC2=MB2+BC2=28
∴MC=,
∵BM∥CD
∴△MNB∽△CND,
∴,且BD=
,
∴設DN=x,
則有,
解得x=,
即DN=.
科目:初中數學 來源: 題型:
【題目】為提升學生的藝術素養,某校計劃開設四門選修課程:聲樂、舞蹈、書法、攝影.要求每名學生必須選修且只能選修一門課程,為保證計劃的有效實施,學校隨機對部分學生進行了一次調查,并將調査結果繪制成如下不完整的統計表和統計圖.
學生選修課程統計表
課程 | 人數 | 所占百分比 |
聲樂 | 14 | |
舞蹈 | 8 | |
書法 | 16 | |
攝影 | ||
合計 |
根據以上信息,解答下列問題:
(1) ,
.
(2)求出的值并補全條形統計圖.
(3)該校有1500名學生,請你估計選修“聲樂”課程的學生有多少名.
(4)七(1)班和七(2)班各有2人選修“舞蹈”課程且有舞蹈基礎,學校準備從這4人中隨機抽取2人編排“舞蹈”在開班儀式上表演,請用列表法或畫樹狀圖的方法求所抽取的2人恰好來自同一個班級的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知二次函數和一次函數
.
(1)當t=0時,試判斷二次函數的圖象與x軸是否有公共點,如果有,請寫出公共點的坐標;
(2)若二次函數的圖象與x軸的兩個不同公共點,且這兩個公共點間的距離為8,求t的值;
(3)求證:不論實數t取何值,總存在實數x,使≥
.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,將邊長為1的正方形紙片ABCD折疊,使點B的對應點M落在邊CD上(不與點C、D重合),折痕為EF,AB的對應線段MG交AD于點N.以下結論正確的有( 。佟MBN=45°;②△MDN的周長是定值;③△MDN的面積是定值.
A.①②B.①③C.②③D.①②③
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,將矩形ABCD繞點A順時針旋轉θ(0°≤θ≤360°),得到矩形AEFG.
(1)當點E在BD上時,求證:AF∥BD;
(2)當GC=GB時,求θ;
(3)當AB=10,BG=BC=13時,求點G到直線CD的距離.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線與直線
相交于
,
兩點,且拋物線經過點
(1)求拋物線的解析式.
(2)點是拋物線上的一個動點(不與點
點
重合),過點
作直線
軸于點
,交直線
于點
.當
時,求
點坐標;
(3)如圖所示,設拋物線與軸交于點
,在拋物線的第一象限內,是否存在一點
,使得四邊形
的面積最大?若存在,請求出點
的坐標;若不存在,說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,O為坐標原點,直線y=kx﹣2k(k<0)的與y軸交于點A,與x軸交于點B.
(1)如圖1,求點B的坐標;
(2)如圖2,第一象限內的點C在經過B點的直線y=-x+b上,CD⊥y軸于點D,連接BD,若S△ABD=2k+2,求C點的坐標(用含k的式子表示);
(3)如圖3,在(2)的條件下,連接OC,交直線AB于點E,若3∠ABD﹣∠BCO=45°,求點E的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中.直線y=﹣x+3與x軸交于點B,與y軸交于點C,拋物線y=ax2+bx+c經過B,C兩點,與x軸負半軸交于點A,連結AC,A(-1,0)
(1)求拋物線的解析式;
(2)點P(m,n)是拋物線上在第一象限內的一點,求四邊形OCPB面積S關于m的函數表達式及S的最大值;
(3)若M為拋物線的頂點,點Q在直線BC上,點N在直線BM上,Q,M,N三點構成以MN為底邊的等腰直角三角形,求點N的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,⊙M的半徑為4,圓心M的坐標為(6,8),點P是⊙M上的任意一點,PA⊥PB,且PA、PB與x軸分別交于A、B兩點,若點A、點B關于原點O對稱,則AB的最小值為____.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com