【題目】已知一次函數y1=x+m的圖象與反比例函數y2=的圖象交于A、B兩點,已知當x>1時,y1>y2;當0<x<1時,y1<y2.
(1)求一次函數的函數表達式;
(2)已知反比例函數在第一象限的圖象上有一點C到x軸的距離為2,求△ABC的面積.
【答案】(1)y1=x+5;(2)21.
【解析】
(1)根據當x>1時,y1>y2;當0<x<1時,y1<y2得出點A的橫坐標為1,代入反比例解析式中得出A點坐標,再將A點坐標代入一次函數解析式得出m的值;
(2)根據反比例函數在第一象限的圖象上有一點C到x軸的距離為2算出C的坐標,再過點C作CD∥x軸交直線AB于D,將三角形ABC的面積分為三角形ACD與三角形BCD的面積之和求算.
(1)∵當x>1時,y1>y2;當0<x<1時,y1<y2
∴點A的橫坐標為1
代入反比例函數解析式,=y
解得:y=6
∴點A的坐標為(1,6)
又∵點A在一次函數圖象上
∴1+m=6
解得:m=5
∴一次函數的解析式為y1=x+5
(2)∵第一象限內點C到x軸的距離為2
∴點C的縱坐標為2
∴2=,解得:x=3
∴點C的坐標為(3,2)
過點C作CD∥x軸交直線AB于D,
則點D的縱坐標為2
∴x+5=2,
解得:x=﹣3
∴點D的坐標為(﹣3,2)
∴CD=3﹣(﹣3)=3+3=6,
點A到CD的距離為6﹣2=4,
聯立
解得: (舍去),
∴點B的坐標為(﹣6,﹣1)
∴點B到CD的距離為2﹣(﹣1)=2+1=3,
S△ABC=S△ACD+S△BCD=×6×4+
×6×3=12+9=21.
科目:初中數學 來源: 題型:
【題目】已知拋物線y=x2+bx+c經過點A(0,6),點B(1,3),直線l1:y=kx(k≠0),直線l2:y=-x-2,直線l1經過拋物線y=x2+bx+c的頂點P,且l1與l2相交于點C,直線l2與x軸、y軸分別交于點D、E.若把拋物線上下平移,使拋物線的頂點在直線l2上(此時拋物線的頂點記為M),再把拋物線左右平移,使拋物線的頂點在直線l1上(此時拋物線的頂點記為N).
(1)求拋物y=x2+bx+c線的解析式.
(2)判斷以點N為圓心,半徑長為4的圓與直線l2的位置關系,并說明理由.
(3)設點F、H在直線l1上(點H在點F的下方),當△MHF與△OAB相似時,求點F、H的坐標(直接寫出結果).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,要在某東西走向的A、B兩地之間修一條筆直的公路,在公路起點A處測得某農戶C在A的北偏東68°方向上.在公路終點B處測得該農戶c在點B的北偏西45°方向上.已知A、B兩地相距2400米.
(1)求農戶c到公路B的距離;(參考數據:sin22°≈,cos22°≈
,tan22°≈
)
(2)現在由于任務緊急,要使該修路工程比原計劃提前4天完成,需將該工程原定的工作效率提高20%,求原計劃該工程隊毎天修路多少米?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O分別交BC于點D,交CA的延長線于點E,過點D作DH⊥AC,垂足為點H,連接DE,交AB于點F.
(1)求證:DH是⊙O的切線;
(2)若⊙O的半徑為4,AE=FE時,求的長(結果保留π);
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,兩個三角形紙板,
能完全重合,
,
,
,將
繞點
從重合位置開始,按逆時針方向旋轉,邊
,
分別與
,
交于點
,
(點
不與點
,
重合),點
是
的內心,若
,點
運動的路徑為
,則圖中陰影部分的面積為( )
A.B.
C.
D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在圖1至圖3中,的直徑
,
切
于點
,
,連接
交
于點
,連接
,
是線段
上一點,連接
.
(1)如圖1,當點,
的距離最小時,求
的長;
(2)如圖2,若射線過圓心
,交
于點
,
,求
的值;
(3)如圖3,作于點
,連接
,直接寫出
的最小值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,頂點為M的拋物線C:y=ax2+bx與x軸的另一個交點為A(2,0),連接OM、AM,∠OMA=90°.
(1)求拋物線C1的函數表達式;
(2)已知點D的坐標為(0,﹣2),將拋物線C1向上平移得到拋物線C2,拋物線C2與x軸分別交于點E、F(點E在點F的左側),如果△DOM與△MAF相似,求所有符合條件的拋物線C2的函數表達式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】2020年注定是不平凡的一年,新年伊始,一場突如其來的疫情席卷全國,全國人民萬眾一心,抗戰疫情.為了早日取得抗疫的勝利,各級政府、各大新聞媒體都加大了對防疫知識的宣傳.某校為了了解初一年級共480名同學對防疫知識的掌握情況,對他們進行了防疫知識測試.現隨機抽取甲、乙兩班各15名同學的測試成績(滿分100分)進行整理分析,過程如下:
(收集數據)
甲班15名學生測試成績分別為:78,83,89,97,98,85,100,94,87,90,93,92,99,95;100.
乙班15名學生測試成績中90≤x<95的成績如下:91,92,94,90,93
(整理數據):
班級 | 75≤x<80 | 80≤x<85 | 85≤x<90 | 90≤x<95 | 95≤x<100 |
甲 | 1 | 1 | 3 | 4 | 6 |
乙 | 1 | 2 | 3 | 5 | 4 |
(分析數據):
班級 | 平均數 | 眾數 | 中位數 | 方差 |
甲 | 92 | a | 93 | 47.3 |
乙 | 90 | 87 | b | 50.2 |
(應用數據):
(1)根據以上信息,可以求出:a=_____分,b=______分;
(2)若規定測試成績92分及其以上為優秀,請估計參加防疫知識測試的480名學生中成績為優秀的學生共有多少人;
(3)根據以上數據,你認為哪個班的學生防疫測試的整體成績較好?請說明理由(一條理由即可).
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com