【題目】如圖,二次函數y=ax2+bx+c(a≠0)的圖象與x軸交于點(2,0)和(﹣3.5,0),頂點為(﹣1,4),根據圖象直接寫出下列答案.
(1)方程ax2+bx+c=0的兩個根;
(2)不等式ax2+bx+c<0的解集;
(3)若方程ax2+bx+c=k有兩個不相等實根,則k的取值范圍是什么?
【答案】
(1)解:由圖象得:方程ax2+bx+c=0的兩個根為:x1=﹣3.5,x2=2
(2)解:不等式ax2+bx+c<0,即y<0;
由圖象得:當y<0時,x<﹣3.5或x>2,
∴不等式ax2+bx+c<0的解集為:x<﹣3.5或x>2
(3)解:∵方程ax2+bx+c=k有兩個不相等實根,
∴當y=k時,與拋物線有兩個交點,即k<4
【解析】(1)方程ax2+bx+c=0的兩個根,就是拋物線與x軸兩交點的橫坐標;(2)在圖象中找y<0時,所以對應的x的取值;(3)y=k時,與拋物線有兩個交點,即k<4.
【考點精析】認真審題,首先需要了解二次函數的性質(增減性:當a>0時,對稱軸左邊,y隨x增大而減。粚ΨQ軸右邊,y隨x增大而增大;當a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減小),還要掌握拋物線與坐標軸的交點(一元二次方程的解是其對應的二次函數的圖像與x軸的交點坐標.因此一元二次方程中的b2-4ac,在二次函數中表示圖像與x軸是否有交點.當b2-4ac>0時,圖像與x軸有兩個交點;當b2-4ac=0時,圖像與x軸有一個交點;當b2-4ac<0時,圖像與x軸沒有交點.)的相關知識才是答題的關鍵.
科目:初中數學 來源: 題型:
【題目】湘潭市繼2017年成功創建全國文明城市之后,又準備爭創全國衛生城市.某小區積極響應,決定在小區內安裝垃圾分類的溫馨提示牌和垃圾箱,若購買2個溫馨提示牌和3個垃圾箱共需550元,且垃圾箱的單價是溫馨提示牌單價的3倍.
(1)求溫馨提示牌和垃圾箱的單價各是多少元?
(2)該小區至少需要安放48個垃圾箱,如果購買溫馨提示牌和垃圾箱共100個,且費用不超過10000元,請你列舉出所有購買方案,并指出哪種方案所需資金最少?最少是多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知Rt△ABC中,∠ACB=90°,CA=CB,D是AC上一點,E在BC的延長線上,且CE=CD,試猜想BD和AE的關系,并說明你猜想的正確性.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,三角形ABC中,AB=AC,D,E分別為邊AB,AC上的點,DM平分∠BDE,EN平分∠DEC,若∠DMN=110°,則∠DEA=( )
A. 40° B. 50° C. 60° D. 70°
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=5cm,BC=12cm,將△ABC繞點B順時針旋轉60°,得到△BDE,連接DC交AB于點F,則△ACF與△BDF的周長之和為cm.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC中,D,E分別是AC,AB上的點,BD與CE交于點O.給出下列三個條件:①∠EBO=∠DCO;②∠BEO=∠CDO;③BE=CD.上述三個條件中,哪兩個條件可判定△ABC是等腰三角形(用序號寫出一種情形):_______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,在△ABC和△EDC中,AC=CE=CB=CD;∠ACB=∠DCE=90°,AB與CE交于F,ED與AB,BC,分別交于M,H.
(1)求證:CF=CH;
(2)如圖2,△ABC不動,將△EDC繞點C旋轉到∠BCE=45°時,試判斷四邊形ACDM是什么四邊形?并證明你的結論.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,一個農戶要建一個矩形豬舍,豬舍的一邊利用長為12m的房墻,另外三邊用25m長的建筑材料圍成,為了方便進出,在垂直于房墻的一邊留一個1m寬的門.
(1)所圍成矩形豬舍的長、寬分別是多少時,豬舍面積為80m2?
(2)為做好豬舍的衛生防疫,現需要對圍成的矩形進行硬底化,若以房墻的長為矩形豬舍一邊的長,且已知硬底化的造價為60元/平方米,請你幫助農戶計算矩形豬舍硬底化需要的費用.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com