【題目】如圖,在Rt△ABC中,∠C=90°,BD是角平分線,點O在AB上,以點O為圓心,OB為半徑的圓經過點D,交BC于點E.
(1)求證:AC是⊙O的切線;
(2)若OB=10,CD=8,求BE的長.
【答案】
(1)證明:連接OD,
∵BD為∠ABC平分線,
∴∠1=∠2,
∵OB=OD,
∴∠1=∠3,
∴∠2=∠3,
∴OD∥BC,
∵∠C=90°,
∴∠ODA=90°,
則AC為圓O的切線
(2)解:過O作OG⊥BC,連接OE,
∴四邊形ODCG為矩形,
∴GC=OD=OB=10,OG=CD=8,
在Rt△OBG中,利用勾股定理得:BG=6,
∵OG⊥BE,OB=OE,
∴BE=2BG=12.
解得:BE=12.
【解析】(1)連接OD,由BD為角平分線得到一對角相等,根據OB=OD,等邊對等角得到一對角相等,等量代換得到一對內錯角相等,進而確定出OD與BC平行,利用兩直線平行同位角相等得到∠ODA為直徑,即可得證;(2)過O作OG垂直于BE,可得出四邊形ODCG為矩形,在直角三角形OBG中,利用勾股定理求出BG的長,由垂徑定理可得BE=2BG.
科目:初中數學 來源: 題型:
【題目】平行四邊形ABCD中,過點D作DE⊥AB于點E,點F在CD上,CF=AE,連接BF,AF.
(1)求證:四邊形BFDE是矩形;
(2)若AF平分∠BAD,且AE=3,DE=4,求矩形BFDE的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,在平面直角坐標系中,已知△ABC≌△FDE,若A點的坐標為(a,1),BC∥x軸,B點的坐標為(b,-2),D、E兩點都在y軸上,則F點到y軸的距離為_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下列說法:①=﹣10;②數軸上的點與實數成一一對應關系;③一個數的算術平方根仍是它本身,這樣的數有三個;④任何實數不是有理數就是無理數;⑤兩個無理數的和還是無理數;⑥無理數都是無限小數,正確的個數有( 。
A. 2個 B. 3個 C. 4個 D. 5個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC中,∠BAC=900,AB=AC,點D是BC上一動點,連接AD,過點A作AE⊥AD,并且始終保持AE=AD,連接CE.
(1)求證:△ABD≌△ACE;
(2)若AF平分∠DAE交BC于F,探究線段BD,DF,FC之間的數量關系,并證明;
(3)在(2)的條件下,若BD=6,CF=8,求AD的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,D,E分別是△ABC的邊AB、BC上的點,且DE∥AC,AE、CD相交于點O,若S△DOE:S△COA=1:25,則S△BDE與S△CDE的比是( )
A.1:3
B.1:4
C.1:5
D.1:25
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點A是反比例函數y1= (x>0)圖象上一點,過點A作x軸的平行線,交反比例函數y2=
(x>0)的圖象于點B,連接OA、OB,若△OAB的面積為2,則k的值為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小明同學在學習了全等三角形的相關知識后發現,只用兩把完全相同的長方形直尺就可以作出一個角的平分線.如圖:一把直尺壓住射線OB,另一把直尺壓住射線OA并且與第一把直尺交于點P,小明說:“射線OP就是∠BOA的角平分線.”他這樣做的依據是( )
A. 角的內部到角的兩邊的距離相等的點在角的平分線上
B. 角平分線上的點到這個角兩邊的距離相等
C. 三角形三條角平分線的交點到三條邊的距離相等
D. 以上均不正確
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】甲、乙兩名同學在一次用頻率去估計概率的實驗中,統計了某一結果出現的頻率繪出的統計圖如圖所示,則符合這一結果的實驗可能是( )
A.擲一枚正六面體的骰子,出現1點的概率
B.從一個裝有2個白球和1個紅球的袋子中任取一球,取到紅球的概率
C.拋一枚硬幣,出現正面的概率
D.任意寫一個整數,它能被2整除的概率
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com