【題目】有一包長方體的東西,用三種不同的方法打包,哪一種方法使用的繩子最短?哪一種方法使用的繩子最長?(a+b>2c)
【答案】第(1)4a+4b+8c,第(2)4a+4b+4c,第(3)6a+6b+4c,第(3)種方法繩子最長,第(2)種方法繩子最短.
【解析】
根據圖可得:第(1)種方法的繩子長為4a+4b+8c,第(2)種方法的繩子長為4a+4b+4c,第(3)種方法的繩子長為6a+6b+4c,然后利用作差法比較整式的大小,因此
(6a+6b+4c)-(4a+4b+8c)=2a+2b-4c,根據a+b>2c,得到2a+2b>4c,故第(3)比(1)長,再利用作差法比較可得: (6a+6b+4c)-(4a+4b+4c)=2a+2b>0,故第(3)比(2)長, 再利用作差法比較可得:(4a+4b+8c)-(4a+4b+4c)=4c>0,故第(3)種方法繩子最長,第(2)種方法繩子最短.
第(1)種方法的繩子長為4a+4b+8c,
第(2)種方法的繩子長為4a+4b+4c,
第(3)種方法的繩子長為6a+6b+4c,
∵(6a+6b+4c)-(4a+4b+8c)=2a+2b-4c,
又a+b>2c,得到2a+2b>4c,故第(3)比(1)長,
∵(6a+6b+4c)-(4a+4b+4c)=2a+2b>0,故第(3)比(2)長,
又(4a+4b+8c)-(4a+4b+4c)=4c>0,
故第(3)種方法繩子最長,第(2)種方法繩子最短.
科目:初中數學 來源: 題型:
【題目】圖1是由若干個小圓圈堆成的一個形如等邊三角形的圖案,最上面一層有一個圓圈,
以下各層均比上一層多一個圓圈,一共堆了n 層.將圖1倒置后與原圖1拼成圖2的形狀,這樣我們可以
算出圖1中所有圓圈的個數為1+2+3+…+n=.
如果圖中的圓圈共有13層,請解決下列問題:
(1)我們自上往下,在每個圓圈中按圖3的方式填上一串連續的正整數1,2,3,4,……,則最底層最左
邊這個圓圈中的數是 ;
(2)我們自上往下,在每個圓圈中按圖4的方式填上一串連續的整數-23,-22,-21,-20,……,求
最底層最右邊圓圈內的數是_______;
(3)求圖4中所有圓圈中各數的絕對值之和.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某市甲、乙兩個汽車銷售公司,去年一至十月份每月銷售同種品牌汽車的情況如圖所示:
請你根據上圖填寫下表:
銷售公司 | 平均數 | 方差 | 中位數 | 眾數 |
甲 | 9 | |||
乙 | 9 | 8 |
請你從以下兩個不同的方面對甲、乙兩個汽車銷售公司去年一至十月份的銷售情況進行分析:
從平均數和方差結合看;
從折線圖上甲、乙兩個汽車銷售公司銷售數量的趨勢看
分析哪個汽車銷售公司較有潛力
.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某電腦公司銷售部為了定制下個月的銷售計劃,對20位銷售員本月的銷售量進行了統計,繪制成如圖所示的統計圖,則這20位銷售人員本月銷售量的平均數、中位數、眾數分別是( )
A.19,20,14
B.19,20,20
C.18.4,20,20
D.18.4,25,20
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下列語句錯誤的有( )
①近似數0.010精確到千分位
②如果兩個角互補,那么一個是銳角,一個是鈍角
③若線段,則P一定是AB中點
④A與B兩點間的距離是指連接A、B兩點間的線段
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(10分)如圖,在矩形ABCD中,E,F為BC上兩點,且BE=CF,連接AF,DE交于點O.
求證:(1)△ABF≌△DCE;
(2)△AOD是等腰三角形.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下列關于函數 的四個命題:①當
時,
有最小值10;②
為任意實數,
時的函數值大于
時的函數值;③若
,且
是整數,當
時,
的整數值有
個;④若函數圖象過點
和
,其中
,
,則
.其中真命題的序號是( )
A.①
B.②
C.③
D.④
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,正方形ABCD中,G為BC邊上一點,BE⊥AG于E,DF⊥AG于F,連接DE.
(1)求證:△ABE≌△DAF;
(2)若AF=1,S△ADE=8,求EF的長.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com