【題目】如圖,正方形ABCD的四個頂點分別在正方形EFGH的四條邊上,我們稱正方形EFGH是正方形ABCD的外接正方形.
探究一:巳知邊長為1的正方形ABCD,是否存在一個外接正方形EFGH,它的面積是正方形ABCD面積的2倍?如圖,假設存在正方形EFGH,它的面積是正方形ABCD的2倍.
因為正方形ABCD的面積為1,則正方形EFGH的面積為2,
所以EF=FG=GH=HE=,設EB=x,則BF=
﹣x,
∵Rt△AEB≌Rt△BFC
∴BF=AE=﹣x
在Rt△AEB中,由勾股定理,得
x2+(﹣x)2=12
解得,x1=x2=
∴BE=BF,即點B是EF的中點.
同理,點C,D,A分別是FG,GH,HE的中點.
所以,存在一個外接正方形EFGH,它的面積是正方形ABCD面積的2倍
探究二:巳知邊長為1的正方形ABCD,是否存在一個外接正方形EFGH,它的面積是正方形ABCD面積的3倍?(仿照上述方法,完成探究過程)
探究三:巳知邊長為1的正方形ABCD, 一個外接正方形EFGH,它的面積是正方形ABCD面積的4倍?(填“存在”或“不存在”)
探究四:巳知邊長為1的正方形ABCD,是否存在一個外接正方形EFGH,它的面積是正方形ABCD面積的n倍?(n>2)(仿照上述方法,完成探究過程)
【答案】不存在,詳見解析
【解析】
探究二,根據探究一的解答過程、運用一元二次方程計算即可;探究三,根據探究一的解答過程、運用一元二次方程根的判別式解答;探究四,根據探究一的解答過程、運用一元二次方程根的判別式解答.
探究二:因為正方形ABCD的面積為1,則正方形EFGH的面積為3,
所以EF=FG=GH=HE=,設EB=x,則BF=
﹣x,
∵Rt△AEB≌Rt△BFC,
∴BF=AE=﹣x,
在Rt△AEB中,由勾股定理,得,
x2+(﹣x)2=12,
整理得x2﹣x+1=0,
b2﹣4ac=3﹣4<0,
此方程無解,
不存在一個外接正方形EFGH,它的面積是正方形ABCD面積的3倍;
探究三:因為正方形ABCD的面積為1,則正方形EFGH的面積為4,
所以EF=FG=GH=HE=2,設EB=x,則BF=2﹣x,
∵Rt△AEB≌Rt△BFC,
∴BF=AE=2﹣x,
在Rt△AEB中,由勾股定理,得,
x2+(2﹣x)2=12,
整理得2x2﹣4x+3=0,
b2﹣4ac=16﹣24<0,
此方程無解,
不存在一個外接正方形EFGH,它的面積是正方形ABCD面積的3倍,
故答案為:不存在;
探究四:因為正方形ABCD的面積為1,則正方形EFGH的面積為n,
所以EF=FG=GH=HE=,設EB=x,則BF=
﹣x,
∵Rt△AEB≌Rt△BFC,
∴BF=AE=﹣x,
在Rt△AEB中,由勾股定理,得,
x2+(﹣x)2=12,
整理得2x2﹣2x+n﹣1=0,
b2﹣4ac=8﹣4n<0,
此方程無解,
不存在一個外接正方形EFGH,它的面積是正方形ABCD面積的n倍.
科目:初中數學 來源: 題型:
【題目】某校九年級有24個班,共1 000名學生,他們參加了一次數學測試.學校統計了所有學生的成績,得到下列統計圖.
(1)求該校九年級學生本次數學測試成績的平均數;
(2)下列關于本次數學測試說法正確的是( )
A.九年級學生成績的眾數與平均數相等
B.九年級學生成績的中位數與平均數相等
C.隨機抽取一個班,該班學生成績的平均數等于九年級學生成績的平均數
D.隨機抽取300名學生,可以用他們成績的平均數估計九年級學生成績的平均數
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一輛快車從甲地開往乙地,一輛慢車從乙地開往甲地,兩車同時出發,設快車離乙地的距離為y1(km),慢車離乙地的距離為y2(km),慢車行駛時間為x(h),兩車之間的距離為s(km).y1,y2與x的函數關系圖象如圖1所示,s與x的函數關系圖象如圖2所示.則下列判斷:①圖1中a=3;②當x=h時,兩車相遇;③當x=
時,兩車相距60km;④圖2中C點坐標為(3,180);⑤當x=
h或
h時,兩車相距200km.其中正確的有_____(請寫出所有正確判斷的序號)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在小正方形的邊長均為1的方格紙中,有線段和線段
,點
均在小正方形的頂點上.
(1)在方格紙中畫出以為斜邊的直角三角形
,點E在小正方形的頂點上,且
的面積為5;
(2)在方格紙中畫出以為一邊的
,點
在小正方形的頂點上,
的面積為4,射線
與射線
交于點
,且
,連接
,請直接寫出線段
的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】工人師傅用一塊長為2m,寬為1.2m的矩形鐵皮制作一個無蓋的長方體容器,需要將四角各裁掉一個正方形.(厚度不計)
(1)若長方體底面面積為1.28m2,求裁掉的正方形邊長;
(2)若要求制作的長方體的底面長不大于底面寬的3倍,并將容器進行防銹處理,側面每平方米的費用為50元,底面每平方米的費用為200元,裁掉的正方形邊長多大時,總費用最低,最低為多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某超市預測某飲料有發展前途,用1600元購進一批飲料,面市后果然供不應求,又用6000元購進這批飲料,第二批飲料的數量是第一批的3倍,但單價比第一批貴2元.
(1)第一批飲料進貨單價多少元?
(2)若二次購進飲料按同一價格銷售,兩批全部售完后,獲利不少于1200元,那么銷售單價至少為多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,若干個全等的正五邊形排成環狀,圖中所示的是前3個正五邊形,要完成這一圓環還需正五邊形的個數為( 。
A. 10 B. 9 C. 8 D. 7
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知△AOB和△A1OB1是以點O為位似中心的位似圖形,且△AOB和△A1OB1的周長之比為1:2,點B的坐標為(-1,2),則點B1的坐標為( 。
A. B.
C.
D.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com