【題目】如圖,AB∥DE,AB=DE,BF=EC.
(1)求證:AC∥DF;
(2)若CF=1個單位長度,能由△ABC經過圖形變換得到△DEF嗎?若能,請你用軸對稱、平移或旋轉等描述你的圖形變換過程;若不能,說明理由.
【答案】(1)證明見試題解析;(2)能,△ABC先向右平移1個單位長度,再繞點C旋轉180°即可得到△DEF.
【解析】
試題分析:(1)先證△ABC≌△DEF,得出∠ACB=∠DFE,故∠ACF=∠DFC,即可得到結論;
(2)根據平移和旋轉描述圖形變換過程即可.
試題解析:(1)∵AB∥DE,∴∠B=∠E,∵BF=CE,∴BF﹣FC=CE﹣FC,即BC=EF,在△ABC和△DEF中,∵AB=DE,∠B=∠E,BC=EF,∴△ABC≌△DEF(SAS),∴∠ACB=∠DFE,∴∠ACF=∠DFC,∴AC∥DF;
(2)△ABC先向右平移1個單位長度,再繞點C旋轉180°即可得到△DEF.
科目:初中數學 來源: 題型:
【題目】某職業高中機電班共有學生42人,其中男生人數比女生人數的2倍少3人.
(1)該班男生和女生各有多少人?
(2)某工廠決定到該班招錄30名學生,經測試,該班男、女生每天能加工的零件數分別為50個和45個,為保證他們每天加工的零件總數不少于1460個,那么至少要招錄多少名男學生?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,四邊形ABCD是邊長為a的正方形,點G、E分別是邊AB、BC的中點,∠AEF=90°,且EF交正方形外角的平方線CF于點F.
(1)證明:△AGE≌△ECF;
(2)求△AEF的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知∠MAN=135°,正方形ABCD繞點A旋轉.
(1)當正方形ABCD旋轉到∠MAN的外部(頂點A除外)時,AM,AN分別與正方形ABCD的邊CB,CD的延長線交于點M,N,連接MN.
①如圖1,若BM=DN,則線段MN與BM+DN之間的數量關系是 ;
②如圖2,若BM≠DN,請判斷①中的數量關系是否仍成立?若成立,請給予證明;若不成立,請說明理由;
(2)如圖3,當正方形ABCD旋轉到∠MAN的內部(頂點A除外)時,AM,AN分別與直線BD交于點M,N,探究:以線段BM,MN,DN的長度為三邊長的三角形是何種三角形,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠ABC、∠ACB的平分線相交于F,過F作DE∥BC,交AB于D,交AC于E,那么下列結論:①△BDF、△CEF都是等腰三角形;②DE=DB+CE;③AD+DE+AE=AB+AC;④BF=CF.正確的有 .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com