試題分析:解:(1)由題知,k≠0.把x=0代入y=kx+5k中,得y=5k;把y=0代入y=kx+5k中,得x=-5.∴A(-5,0),B(0,5k),∵點B在y軸正半軸上,∴5k>0.即OA=5,OB=5k.
∵OA=OB,∴k=1.∴直線l的解析式為y=x+5.
(2)法1:由(1)知,k=1,∴OA=5,OB=5.∵BN⊥OQ,AM⊥OQ,∴∠AMO=BNO=90°.
∵BN=3,∴在Rt△BON中,

.
∵MN=7,∴OM=3.∴在Rt△AMO中,

.
法2:由(1)知,OA=OB.∵AM⊥OQ,BN⊥OQ,∴∠AMO=BNO=90°,∴∠3+∠2=90°.
∵∠AOB=90°,∴∠1+∠2=90°,∴∠1=∠3,∴△AOM≌△OBN(AAS).
∴AM=ON,OM=BN=3.∵MN=7∴AM=ON=4
(3)PB長為定值.
法1:如圖,過點E作EC⊥y軸于C,則∵△ABE為等腰直角三角形
∴AB=BE,∠ABE=90°.由(2)法2易證,△AOB≌△BCE(AAS),∴BC=OA=5,CE=OB.
∵△OBF為等腰直角三角形,∴OB=BF,∠OBF=90°.∴BF=CE,∠PBF=∠PCE=90°.
∵∠1=∠2,∴△PBF≌△PCE(AAS),

,即PB長為

.
法二:由△AOB≌△BCE,可求E(-5k,5k+5).∵F(5k,5k),

點評:本題難度較大,主要考查學生對全等三角形及勾股定理等知識點綜合分析能力,注意培養數形結合思想,靈活運用掌握的幾何性質定理,運用到考試考題中去。