【題目】如圖,四邊形ABCD中,對角線AC⊥BD,且AC=8,BD=4,各邊中點分別為A1、B1、C1、D1,順次連接得到四邊形A1B1C1D1,再取各邊中點A2、B2、C2、D2,順次連接得到四邊形A2B2C2D2,…,依此類推,這樣得到四邊形AnBnCnDn,則四邊形AnBnCnDn的面積為( )
A. B.
C.
D. 不確定
【答案】B
【解析】試題分析:根據三角形的面積公式,可以求得四邊形ABCD的面積是16;根據三角形的中位線定理,得A1B1∥AC,A1B1=AC,則△BA1B1∽△BAC,得△BA1B1和△BAC的面積比是相似比的平方,即
,因此四邊形A1B1C1D1的面積是四邊形ABCD的面積的
,依此類推可得四邊形AnBnCnDn的面積.
∵四邊形A1B1C1D1的四個頂點A1、B1、C1、D1分別為AB、BC、CD、DA的中點,
∴A1B1∥AC,A1B1=AC, ∴△BA1B1∽△BAC, ∴△BA1B1和△BAC的面積比是相似比的平方,即
,
又四邊形ABCD的對角線AC=8,BD=4,AC⊥BD, ∴四邊形ABCD的面積是16,
∴SA1B1C1D1=×16, ∴四邊形AnBnCnDn的面積=16×
=
.
科目:初中數學 來源: 題型:
【題目】找規律:21-20=20 ;22-21=21 ;23-22=2 2;………利用你的發現,求20+21+22+23+…+22018+22019的值是( )
A. 22019 -1B. 22019 +1C. 22020 -1D. 22020 +1
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在菱形ABCD中,AB=4cm,∠ADC=120°,點E、F同時由A、C兩點出發,分別沿AB、CB方向向點B勻速移動(到點B為止),點E的速度為1cm/s,點F的速度為2cm/s,經過t秒△DEF為等邊三角形,則t的值為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】八個邊長為1的正方形如圖擺放在平面直角坐標系中,經過原點的一條直線l將這八個正方形分成面積相等的兩部分,則該直線l的解析式為( )
A.y=﹣x
B.y=﹣ x
C.y=﹣ x
D.y=﹣ x
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點E是矩形ABCD的邊CD上一點,把△ADE沿AE對折,點D的對稱點F恰好落在BC上,已知折痕AE=10cm,且tan∠EFC=
,那么該矩形的周長為_____.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com