【題目】如圖,把一個邊長為a的正方形分成9個完全相同的小正方形,把最中間的一個小正方形涂成白色(圖①),再對其他8個小正方形作同樣的分割(分成9個完全相同的小正方形,把最中間的一個小正方形涂成白色(圖②),繼續同樣的方法分割圖形(圖③),…得到一些既復雜又漂亮的圖形,它的每一部分放大,都和整體一模一樣,它是波蘭數學家謝爾賓斯基構造的,也被稱為“謝爾賓斯基地毯”.求:
(1)圖③中最新的一個最小正方形的邊長;
(2)圖③中所有涂黑部分的面積.
【答案】(1)a;(2)
a2.
【解析】
(1)觀察圖形的變化:每分割一次新的正方形的邊長是上一個正方形邊長的,按此規律即可求解;
(2)觀察圖形的變化:圖①中涂黑部分所有正方形的面積是a,圖②中涂黑部分所有正方形的面積為(
)2a2,進而求解.
解:(1)觀察圖形的變化可知:
每分割一次,新的正方形的邊長是上一個正方形的邊長的,
所以圖③中新的一個最小的正方形的邊長為a=
a;
答:圖③中新的一個最小正方形的邊長為a;
(2)觀察圖形的變化可知:
圖①中,涂黑部分正方形的面積為a,
圖②中,涂黑部分所有正方形的面積為()2a2=
a2,
圖③中,涂黑部分所有正方形的面積為()3a2=
a2.
答:圖③中,涂黑部分所有正方形的面積為a2.
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線與
軸交于點
,與
軸交于
兩點,其對稱軸與
軸交于點
.
(1)求拋物線的解析式和對稱軸;
(2)在拋物線的對稱軸上是否存在一點,使
的周長最?若存在,請求出點
的坐標;若不存在,請說明理由;
(3)連接,在直線
的下方的拋物線上,是否存在一點
,使
的面積最大?若存在,請求出點
的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知四邊形ABCD內接于⊙O,A是的中點,AE⊥AC于A,與⊙O及CB的延長線交于點F,E,且
.
(1)求證:△ADC∽△EBA;
(2)如果AB=8,CD=5,求tan∠CAD的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線y=﹣x2+ax+b交x軸于A(1,0),B(3,0)兩點,點P是拋物線上在第一象限內的一點,直線BP與y軸相交于點C.
(1)求拋物線y=﹣x2+ax+b的解析式;
(2)當點P是線段BC的中點時,求點P的坐標;
(3)在(2)的條件下,求sin∠OCB的值.
【答案】(1) y=﹣x2+4x﹣3;(2) 點P的坐標為(,
);(3)
.
【解析】分析:(1)將點A、B代入拋物線y=-x2+ax+b,解得a,b可得解析式;
(2)由C點橫坐標為0可得P點橫坐標,將P點橫坐標代入(1)中拋物線解析式,易得P點坐標;
(3)由P點的坐標可得C點坐標,A、B、C的坐標,利用勾股定理可得BC長,利用sin∠OCB=可得結果.
詳解:(1)將點A、B代入拋物線y=﹣x2+ax+b可得,
,
解得,a=4,b=﹣3,
∴拋物線的解析式為:y=﹣x2+4x﹣3;
(2)∵點C在y軸上,
所以C點橫坐標x=0,
∵點P是線段BC的中點,
∴點P橫坐標xP==
,
∵點P在拋物線y=﹣x2+4x﹣3上,
∴yP=﹣3=
,
∴點P的坐標為(,
);
(3)∵點P的坐標為(,
),點P是線段BC的中點,
∴點C的縱坐標為2×﹣0=
,
∴點C的坐標為(0,),
∴BC==
,
∴sin∠OCB==
=
.
點睛:本題主要考查了待定系數法求二次函數解析式,二次函數圖像與性質,解直角三角形,勾股定理,利用中點求得點P的坐標是解答此題的關鍵.
【題型】解答題
【結束】
24
【題目】如圖,⊙O是△ABC的外接圓,BC是⊙O的直徑,∠ABC=30°,過點B作⊙O的切線BD,與CA的延長線交于點D,與半徑AO的延長線交于點E,過點A作⊙O的切線AF,與直徑BC的延長線交于點F.
(1)求證:△ACF∽△DAE;
(2)若S△AOC=,求DE的長;
(3)連接EF,求證:EF是⊙O的切線.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,BC是⊙O的直徑,∠ABC=30°,過點B作⊙O的切線BD,與CA的延長線交于點D,與半徑AO的延長線交于點E,過點A作⊙O的切線AF,與直徑BC的延長線交于點F.
(1)求證:△ACF∽△DAE;
(2)若S△AOC=,求DE的長;
(3)連接EF,求證:EF是⊙O的切線.
【答案】(1) 見解析; (2)3 ;(3)見解析.
【解析】試題分析:(1)根據圓周角定理得到∠BAC=90°,根據三角形的內角和得到∠ACB=60°根據切線的性質得到∠OAF=90°,∠DBC=90°,于是得到∠D=∠AFC=30°由相似三角形的判定定理即可得到結論;
(2)根據S△AOC=,得到S△ACF=
,通過△ACF∽△DAE,求得S△DAE=
,過A作AH⊥DE于H,解直角三角形得到AH=
DH=
DE,由三角形的面積公式列方程即可得到結論;
(3)根據全等三角形的性質得到OE=OF,根據等腰三角形的性質得到∠OFG=(180°﹣∠EOF)=30°,于是得到∠AFO=∠GFO,過O作OG⊥EF于G,根據全等三角形的性質得到OG=OA,即可得到結論.
試題解析:(1)證明:∵BC是⊙O的直徑,∴∠BAC=90°,∵∠ABC=30°,∴∠ACB=60°
∵OA=OC,∴∠AOC=60°,∵AF是⊙O的切線,∴∠OAF=90°,∴∠AFC=30°,∵DE是⊙O的切線,∴∠DBC=90°,∴∠D=∠AFC=30,∵∠DAE=ACF=120°,∴△ACF∽△DAE;
(2)∵∠ACO=∠AFC+∠CAF=30°+∠CAF=60°,∴∠CAF=30°,∴∠CAF=∠AFC,∴AC=CF,∴OC=CF,∵S△AOC=,∴S△ACF=
,∵∠ABC=∠AFC=30°,∴AB=AF,∵AB=
BD,∴AF=
BD,∴∠BAE=∠BEA=30°,∴AB=BE=AF,∴
,∵△ACF∽△DAE,∴
=
,∴S△DAE=
,過A作AH⊥DE于H,∴AH=
DH=
DE,∴S△ADE=
DEAH=
×
=
,∴DE=
;
(3)∵∠EOF=∠AOB=120°,∴∠OEB=∠AFO,在△AOF與△BOE中,∵∠OBE=∠OAF,∠OEB=∠AFO,OA=OB,∴△AOF≌△BEO,∴OE=OF,∴∠OFG=(180°﹣∠EOF)=30°,∴∠AFO=∠GFO,過O作OG⊥EF于G,∴∠OAF=∠OGF=90°,在△AOF與△OGF中,∵∠OAF=∠OGF,∠AFO=∠GFO,OF=OF,∴△AOF≌△GOF,∴OG=OA,∴EF是⊙O的切線.
【題型】解答題
【結束】
25
【題目】如圖,在平面直角坐標系中,O為原點,四邊形ABCO是矩形,點A,C的坐標分別是A(0,2)和C(2,0),點D是對角線AC上一動點(不與A,C重合),連結BD,作DE⊥DB,交x軸于點E,以線段DE,DB為鄰邊作矩形BDEF.
(1)填空:點B的坐標為 ;
(2)是否存在這樣的點D,使得△DEC是等腰三角形?若存在,請求出AD的長度;若不存在,請說明理由;
(3)①求證:;
②設AD=x,矩形BDEF的面積為y,求y關于x的函數關系式(可利用①的結論),并求出y的最小值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在數軸上點A表示數a,點B表示數b,a、b滿足|a﹣20|+(b+10)2=0,O是數軸原點,點Q從點B出發,以每秒3個單位長度的速度沿數軸正方向勻速運動,設運動時間為t秒.
(1)點A表示的數為 ,點B表示的數為 .
(2)t為何值時,BQ=2AQ.
(3)若在點Q從點B出發的同時,點P從點O出發,以每秒2個單位長度的速度一直沿數軸正方向勻速運動,而點Q運動到點A時,立即改變運動方向,沿數軸的負方向運動,到達點B時停止運動,在點Q的整個運動過程中,是否存在合適的t值,使得PQ=6?若存在,求出所有符合條件的t值,若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(本題8分)為培養學生數學學習興趣,某校七年級準備開設“神奇魔方”、“魅力數獨”、“數學故事”、“趣題巧解”四門選修課(每位學生必須且只選其中一門).
(1)學校對七年級部分學生進行選課調查,得到如圖所示的統計圖,根據該統計圖,請估計該校七年級480名學生選“數學故事”的人數。
(2)學校將選“數學故事”的學生分成人數相等的A,B,C三個班,小聰、小慧都選擇了“數學故事”,已知小聰不在A班,求他和小慧被分到同一個班的概率.(要求列表或畫樹狀圖)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,矩形ABCD的面積為20cm2,對角線交于點O;以AB、AO為鄰邊做平行四邊形AOC1B,對角線交于點O1;以AB、AO1為鄰邊做平行四邊形AO1C2B;…依此類推,則平行四邊形AO4C5B的面積為( )
A. cm2 B.
cm2 C.
cm2 D.
cm2
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知拋物線y=x2+bx+c經過△ABC的三個頂點,其中點A(0,1),B(9,10),AC∥x軸,點P是直線AC下方拋物線上的動點。
(1)求拋物線的解析式;
(2)過點P且與y軸平行的直線l與直線AB、AC分別交于點E.F,當四邊形AECP的面積最大時,求點P的坐標和四邊形AECP的最大面積;
(3)當點P為拋物線的頂點時,在直線AC上是否存在點Q,使得以C.P、Q為頂點的三角形與△ABC相似?若存在,求出點Q的坐標;若不存在,請說明理由。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com