A. | 8 | B. | 9 | C. | 10 | D. | 11 |
分析 運用正方形邊長相等,再根據同角的余角相等可得∠BAC=∠DCE,然后證明△ACB≌△DCE,再結合全等三角形的性質和勾股定理來求解即可.
解答 解:由于a、b、c都是正方形,所以AC=CD,∠ACD=90°;
∵∠ACB+∠DCE=∠ACB+∠BAC=90°,即∠BAC=∠DCE,
在△ABC和△CED中,
$\left\{\begin{array}{l}{∠ABC=∠DEC=90°}\\{∠ACB=∠CDE}\\{AC=DC}\end{array}\right.$,
∴△ACB≌△DCE(AAS),
∴AB=CE,BC=DE;
在Rt△ABC中,由勾股定理得:AC2=AB2+BC2=AB2+DE2,
即Sb=Sa+Sc=1+9=10,
∴b的面積為10,
故選C.
點評 此題主要考查對全等三角形和勾股定理的綜合運用,關鍵是證明△ACB≌△DCE.
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
科目:初中數學 來源: 題型:選擇題
A. | 明天太陽從西邊升起 | |
B. | 擲出一枚硬幣,正面朝上 | |
C. | 打開電視機,正在播放“新聞聯播” | |
D. | 任意畫一個三角形,它的內角和等于180° |
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:選擇題
A. | a<2 | B. | a=2 | C. | a>2 | D. | a≤2 |
查看答案和解析>>
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com