【題目】四邊形ABCD中,∠ABC+∠D=180°,AC平分∠BAD,CE⊥AB于E,CF⊥AD于F.
(1)求證:△CBE≌△CDF;
(2)若AB=3,DF=2,求AF的長.
【答案】(1)詳見解析;(2)5.
【解析】
(1)根據角平分線的性質可得到CE=CF,根據余角的性質可得到∠EBC=∠D,已知CE⊥AB,CF⊥AD,從而利用AAS即可判定△CBE≌△CDF.
(2)已知EC=CF,AC=AC,則根據HL判定△ACE≌△ACF得AE=AF,最后證得AB+DF=AF即可.
(1)證明:∵AC平分∠BAD,CE⊥AB,CF⊥AD
∴CE=CF
∵∠ABC+∠D=180°,∠ABC+∠EBC=180°
∴∠EBC=∠D.
在△CBE與△CDF中,
,
∴△CBE≌△CDF(AAS);
(2)在Rt△ACE與Rt△ACF中,
,
∴Rt△ACE≌Rt△ACF(HL),
∴AE=AF,
∴AB+DF=AB+BE=AE=AF,
∵AB=3,DF=2,
∴AF=3+2=5.
科目:初中數學 來源: 題型:
【題目】某校為了解九年級名學生的體育綜合素質,隨機抽查了
名學生進行體育綜合測試,所得成績整理分成五組,并制成如下頻數分布表和扇形統計圖。
頻數分布表:
組別 | 成績(分) | 頻數 |
請你根據以上圖表提供的信息,解答下列問題:
(1)頻數分布表中的 ;
(2)扇形統計圖中,組所對應的扇形圓心角的度數是_ 度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為響應市政府“綠色出行”的號召,小張上班由自駕車改為騎公共自行車.已知小張家距上班地點10千米.他騎公共自行車比自駕車平均每小時少行駛45千米,他從家出發到上班地點,騎公共自行車所用的時間是自駕車所用的時間的4倍.小張騎公共自行車平均每小時行駛多少千米?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=24厘米,BC=16厘米,點D為AB的中點,點P在線段BC上以4厘米/秒的速度由B點向C點運動,同時,點Q在線段CA上由C點向A點運動.當點Q的運動速度為_______厘米/秒時,能夠在某一時刻使△BPD與△CQP全等.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某大學計劃為新生配備如圖1所示的折疊椅.圖2中的正方形ACBD是折疊椅撐開后的側面示意圖,其中椅腿AB和CD的長相等,O是它們的中點.若正方形ACBD的面積為[9(2x-3y)2+12(2x-3y) (x+4y) +4(x+4y)2](米2)(x>y),你能求出這種折疊椅張開后的高度嗎?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】煙臺享有“蘋果之鄉”的美譽.甲、乙兩超市分別用3000元以相同的進價購進質量相同的蘋果.甲超市銷售方案是:將蘋果按大小分類包裝銷售,其中大蘋果400千克,以進價的2倍價格銷售,剩下的小蘋果以高于進價10%銷售.乙超市的銷售方案是:不將蘋果按大小分類,直接包裝銷售,價格按甲超市大、小兩種蘋果售價的平均數定價.若兩超市將蘋果全部售完,其中甲超市獲利2100元(其它成本不計).問:
(1)蘋果進價為每千克多少元?
(2)乙超市獲利多少元?并比較哪種銷售方式更合算.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在△ABC中,BC=a ,AB=c,AC=b,則不能作為判定△ABC是直角三角形的條件的是( )
A.B.∠A∶∠B∶∠C=1∶4∶3
C.a∶b∶c =7∶24∶25D.a∶b∶c =4∶5∶6
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB是⊙D的直徑,AD切⊙D于點A,EC=CB.則下列結論:①BA⊥DA;②OC∥AE;③∠COE=2∠CAE;④OD⊥AC.一定正確的個數有( 。
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com