【題目】如圖,直線AB∥CD,EF分別交AB、CD于G、F兩點,射線FM平分∠EFD,將射線FM平移,使得端點F與點G重合且得到射線GN.若∠EFC=110°,則∠AGN的度數是( 。
A. 120° B. 125° C. 135° D. 145°
【答案】D
【解析】
先根據鄰補角的定義可求得∠EFD=70°,再根據角平分線的定義求得∠EFM=35°,由平移的性質可得GN//FM,繼而可得∠EGN=∠EFM=35°,再根據AB//CD,可得∠AGE=∠EFC=110°,再由∠AGN=∠AGE+∠EGN即可得解.
∵∠EFC=110°,∠EFC+∠EFD=180°,
∴∠EFD=70°,
∵FM平分∠EFD,
∴∠EFM=35°,
∵將射線FM平移,使得端點F與點G重合且得到射線GN,
∴GN//FM,
∴∠EGN=∠EFM=35°,
∵AB//CD,
∴∠AGE=∠EFC=110°,
∴∠AGN=∠AGE+∠EGN=110°+35°=145°,
故選D.
科目:初中數學 來源: 題型:
【題目】已知:如圖,在△ABC中,AB=AC,D為邊BC上一點,以AB,BD為鄰邊作平行四邊形ABDE,連接AD,EC.
(1)求證:△ADC≌△ECD;
(2)當點D在什么位置時,四邊形ADCE是矩形,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】中國古代對勾股定理有深刻的認識.
(1)三國時代吳國數學家趙爽第一次對勾股定理加以證明:用四個全等的圖1所示的直角三角形拼成一個圖2所示的大正方形,中間空白部分是一個小正方形.如果大正方形的面積是13,小正方形的面積是1,直角三角形的兩直角邊分別為a,b,求(a+b)2的值;
(2)清朝的康熙皇帝對勾股定理也很有研究,他著有《積求勾股法》:用現代的數學語言描述就是:若直角三角形的三邊長分別為3,4,5的整數倍,設其面積為S,則求其邊長的方法為:第一步=m;第二步:
=k;第三步:分別用3,4,5乘k,得三邊長.當面積S等于150時,請用“積求勾股法”求出這個直角三角形的三邊長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】我市某綠色無公害蔬菜基地有甲、乙兩種植戶,他們們種植了A、B兩類蔬菜,兩種植戶種植的兩類蔬菜的種植面積與總收入如下表:
種植戶 | 種植A類蔬菜面積(單位:畝) | 種植B類蔬菜面積(單位:畝) | 總收入(單位:元) |
甲 | 1 | 3 | 13500 |
乙 | 2 | 2 | 13000 |
說明:不同種植戶種植的同類蔬菜每畝平均收入相等
(1)求A、B兩類蔬菜每畝平均收入各是多少元?
(2)今年甲、乙兩種植戶聯合種植,計劃合租50畝地用來種植A、B兩類蔬菜,為了使總收入不低于16400元,問聯合種植最多可以種植A類蔬菜多少畝?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在直線上順次取 A,B,C 三點,分別以 AB,BC 為邊長在直線的同側作正三角形, 作得兩個正三角形的另一頂點分別為 D,E.
(1)如圖①,連結 CD,AE,求證:CD=AE;
(2)如圖②,若 AB=1,BC=2,求 DE 的長;
(3)如圖③,將圖②中的正三角形 BCE 繞 B 點作適當的旋轉,連結 AE,若有 DE2+BE2= AE2,試求∠DEB 的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一個不透明的袋子里裝有紅、黃、藍三種顏色的球(除顏色以外,其余都相同),其中紅球2個,黃球2個,從中隨機摸出一個球是藍色球的概率為 .
(1)求袋子里藍色球的個數;
(2)甲、乙兩人分別從袋中摸出一個球(不放回),求摸出的兩個球中一個是紅球一個是黃球的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下列哪組條件能夠判別四邊形ABCD是平行四邊形?( 。
A. AB∥CD,AD=BC B. AB=CD,AD=BC
C. ∠A=∠B,∠C=∠D D. AB=AD,CB=CD
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com