精英家教網 > 初中數學 > 題目詳情

【題目】某水果商店以每箱200元價格從市場上購進一批蘋果共8箱,若以每箱蘋果凈重

30千克為標準,超過千克數記為正數,不足千克數記為負數,稱重后記錄如下:

1)這8箱蘋果一共中多少千克,購買這批蘋果一共花了多少錢?

2)若把蘋果的銷售單價定為每千克元,那么銷售這批蘋果(損耗忽略不計)獲得的總銷售金額為_____元,獲得利潤為____________元(用含字母的式子表示);

3)在(2)條件下,若水果商店計劃共獲利,請你通過列方程并求出的值.

【答案】(1)這8箱蘋果一共重236千克,購買這批蘋果一共花了1600.(2);;(3) 若水果商店要獲利,則銷售單價應定為9元每千克.

【解析】

1)將8筐蘋果質量相加可得出購進蘋果的總重量,再利用總價=每筐價格×8可得出購買這批蘋果的總錢數;

2)根據銷售總價=銷售單價×數量,以及結合利潤=銷售總價-成本,即可得出結論;

3)由(2)的結論結合水果商店共獲利,即可得出關于x的一元一次方程,解之即可得出結論.

解:(1)由題意得,8箱蘋果一共重:

=(千克)

購買這批蘋果一共花了(元)

答:這8箱蘋果一共重236千克,購買這批蘋果一共花了1600.

2)已知蘋果的銷售單價定為每千克元,依題意得銷售金額為元;

獲得利潤為()元;

3)由題意得:

解得(元)

答:若水果商店要獲利,則銷售單價應定為9元每千克.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°,以AC為直徑作⊙O,交ABD,過點OOEAB,交BCE.

(1)求證:ED為⊙O的切線;

(2)如果⊙O的半徑為,ED=2,延長EO交⊙OF,連接DF、AF,求ADF的面積.

【答案】(1)證明見解析;(2)

【解析】試題分析:(1)首先連接OD,由OEAB,根據平行線與等腰三角形的性質,易證得 即可得,則可證得的切線;
(2)連接CD,根據直徑所對的圓周角是直角,即可得 利用勾股定理即可求得的長,又由OEAB,證得根據相似三角形的對應邊成比例,即可求得的長,然后利用三角函數的知識,求得的長,然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

試題解析:(1)證明:連接OD,

OEAB

∴∠COE=CAD,EOD=ODA,

OA=OD,

∴∠OAD=ODA,

∴∠COE=DOE

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD,

ED的切線;

(2)連接CD,交OEM,

RtODE中,

OD=32,DE=2,

OEAB

∴△COE∽△CAB,

AB=5,

AC是直徑,

EFAB

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面積為

型】解答
束】
25

【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個公共點M(1,0),且a<b.

(1)求ba的關系式和拋物線的頂點D坐標(用a的代數式表示);

(2)直線與拋物線的另外一個交點記為N,求DMN的面積與a的關系式;

(3)a=﹣1時,直線y=﹣2x與拋物線在第二象限交于點G,點G、H關于原點對稱,現將線段GH沿y軸向上平移t個單位(t>0),若線段GH與拋物線有兩個不同的公共點,試求t的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,某日的錢塘江觀潮信息如圖:

按上述信息,小紅將交叉潮形成后潮頭與乙地之間的距離s(千米)與時間t(分鐘)的函數關系用圖3表示,其中:“11:40時甲地交叉潮的潮頭離乙地12千米記為點A(0,12),點B坐標為(m,0),曲線BC可用二次函數s=t2+bt+c(b,c是常數)刻畫.

(1)求m的值,并求出潮頭從甲地到乙地的速度;

(2)11:59時,小紅騎單車從乙地出發,沿江邊公路以0.48千米/分的速度往甲地方向去看潮,問她幾分鐘后與潮頭相遇?

(3)相遇后,小紅立即調轉車頭,沿江邊公路按潮頭速度與潮頭并行,但潮頭過乙地后均勻加速,而單車最高速度為0.48千米/分,小紅逐漸落后.問小紅與潮頭相遇到落后潮頭1.8千米共需多長時間?(潮水加速階段速度v=v0+(t﹣30),v0是加速前的速度).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在平整的地面上,有若干個完全相同的棱長為1cm的小正方體堆成一個幾何體,如圖所示:

1)這個幾何體是由   個小正方體組成,請畫出從正面、左面、上面看到的這個幾何體的形狀圖;

2)若現在你手頭還有一些相同的小正方體,如果保持從上面和從左面看到的形狀圖不變,最多可以再添加________個小正方體.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】2016年泉州市初中體育中考中,隨意抽取某校5位同學一分鐘跳繩的次數分別為158160,154158,170則由這組數據得到的結論錯誤的是( 。

A. 平均數為160 B. 中位數為158 C. 眾數為158 D. 方差為20.3

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知正方形ABCD,對角線的交點M2,2).規定把正方形ABCD先沿x軸翻折,再向左平移1個單位為一次變換.如此這樣,連續經過2014次變換后,正方形ABCD的對角線交點M的坐標變為( 。

A. (﹣20122B. (﹣2012,﹣2C. (﹣2013,﹣2D. (﹣2013,2

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,DE分別是AB、AC的中點,連接CD,過EEFDCBC的延長線于F

1)證明:四邊形CDEF是平行四邊形;

2)若四邊形CDEF的周長是16cmAC的長為8cm,求線段AB的長度.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】隨著人們經濟收入的不斷提高,汽車已越來越多地進入到各個家庭.某大型超市為緩解停車難問題,建筑設計師提供了樓頂停車場的設計示意圖.按規定,停車場坡道口上坡要張貼限高標志,以便告知車輛能否安全駛入.如圖,地面所在的直線ME與樓頂所在的直線AC是平行的,CD的厚度為0.5m,求出汽車通過坡道口的限高DF的長(結果精確到0.1m,sin28°≈0.47,cos28°≈0.88,tan28°≈0.53).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在矩形OABC中,點Ax軸上,點Cy軸上,點B的坐標是,將沿直線BD折疊,使得點C落在對角線OB上的點E處,折痕與OC交于點D

1)求直線OB的解析式及線段OE的長.

2)求直線BD的解析式及點E的坐標.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视