【題目】對于實數,若存在坐標
同時滿足一次函數
和反比例函數
,則二次函數
為一次函數和反比例函數的“共享”函數.
(1)試判斷(需要寫出判斷過程):一次函數和反比例函數
是否存在“共享”函數?若存在,寫出它們的“共享”函數和實數對坐標;
(2)已知整數滿足條件:
,并且一次函數
與反比例函數
存在“共享”函數
,求整數
的值.
科目:初中數學 來源: 題型:
【題目】在多項式的乘法公式中,完全平方公式是其中重要的一個.
(1)請補全完全平方公式的推導過程:
,
,
.
(2)如圖,將邊長為的正方形分割成Ⅰ、Ⅱ、Ⅲ、Ⅳ四部分,請你結合圖給出完全平方公式的幾何解釋.
(3)用完全平方公式求的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了解某次“小學生書法比賽”的成績情況,隨機抽取了30名學生的成績進行統計,并將統計情況繪成如圖所示的頻數分布直方圖,己知成績x(單位:分)均滿足“50≤x<100”.根據圖中信息回答下列問題:
(1)圖中a的值為 ;
(2)若要繪制該樣本的扇形統計圖,則成績x在“70≤x<80”所對應扇形的圓心角度數為 度;
(3)此次比賽共有300名學生參加,若將“x≥80”的成績記為“優秀”,則獲得“優秀“的學生大約有 人:
(4)在這些抽查的樣本中,小明的成績為92分,若從成績在“50≤x<60”和“90≤x<100”的學生中任選2人,請用列表或畫樹狀圖的方法,求小明被選中的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,在等邊和等邊
中,
,點P在
的高
上(點
與點
不重合),點
在點
的左側,連接
,
.
(1)求證:;
(2)當點與點
重合時,延長
交
于點
,請你在圖2中作出圖形,并求出
的長;
(3)直接寫出線段長度的最小值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】關于x的方程2x2﹣5xsinA+2=0有兩個相等的實數根,其中∠A是銳角三角形ABC的一個內角.
(1)求sinA的值;
(2)若關于y的方程y2﹣10y+k2﹣4k+29=0的兩個根恰好是△ABC的兩邊長,求△ABC的周長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一塊余料ABCD,AD∥BC,現進行如下操作:以點B為圓心,適當長為半徑畫弧,分別交BA,BC于點G,H;再分別以點G,H為圓心,大于GH的長為半徑畫弧,兩弧在∠ABC內部相交于點O,畫射線BO,交AD于點E.
(1)求證:AB=AE;
(2)若∠A=100°,求∠EBC的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知二次函數y=ax2﹣2ax﹣2的圖象(記為拋物線C1)頂點為M,直線l:y=2x﹣a與x軸,y軸分別交于A,B.
(1)對于拋物線C1,以下結論正確的是 ;
①對稱軸是:直線x=1;②頂點坐標(1,﹣a﹣2);③拋物線一定經過兩個定點.
(2)當a>0時,設△ABM的面積為S,求S與a的函數關系;
(3)將二次函數y=ax2﹣2ax﹣2的圖象C1繞點P(t,﹣2)旋轉180°得到二次函數的圖象(記為拋物線C2),頂點為N.
①當﹣2≤x≤1時,旋轉前后的兩個二次函數y的值都會隨x的增大而減小,求t的取值范圍;
②當a=1時,點Q是拋物線C1上的一點,點Q在拋物線C2上的對應點為Q',試探究四邊形QMQ'N能否為正方形?若能,求出t的值,若不能,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】圖1是某浴室花灑實景圖,圖2是該花灑的側面示意圖.已知活動調節點B可以上下調整高度,離地面CD的距離BC=160cm.設花灑臂與墻面的夾角為α,可以扭動花灑臂調整角度,且花灑臂長AB=30cm.假設水柱AE垂直AB直線噴射,小華在離墻面距離CD=120cm處淋浴.
(1)當α=30°時,水柱正好落在小華的頭頂上,求小華的身高DE.
(2)如果小華要洗腳,需要調整水柱AE,使點E與點D重合,調整的方式有兩種:
①其他條件不變,只要把活動調節點B向下移動即可,移動的距離BF與小華的身高DE有什么數量關系?直接寫出你的結論;
②活動調節點B不動,只要調整α的大小,在圖3中,試求α的度數.
(參考數據:≈1.73,sin8.6°≈0.15,sin36.9°≈0.60,tan36.9°≈0.75)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】鄭州市精準扶貧工作已進入攻堅階段.貧困戶張伯伯在相關單位的幫扶下把一片坡地改造后種植了優質水果藍莓,今年正式上市銷售在銷售的30天中,第一天賣出20千克為了擴大銷量采取了降價措施以后每天比前一天多賣出4千克第天的售價為
元/千克,
關于
的函數解析式為
,且第12天的售價為32元/千克,第26天的售價為25元/千克.已知種植銷售藍莓的成本是18元/千克,每天的利潤是
元(利潤=銷售收入
成本).
(1)_____________,
____________;
(2)求銷售藍莓第幾天時,當天的利潤最大?最大利潤是多少?
(3)在銷售藍莓的30天中,當天利潤不低于870元的共有多少天?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com